

The Use of Norepinephrine vs Epinephrine in Post Cardiac Arrest Shock

Introduction

- 1. The effects of epinephrine on animal hemodynamics have been studied since the late 1800s with recent concern with deleterious complications with cerebral and myocardial oxygen supply.
- 2. Recently, there has been consideration for norepinephrine post cardiac arrest to minimize the complications associated with epinephrine

	Epinephrine	Norepinephrine	
Dose	Weight-based dosing: Usual dosage range: 0.01 to 1 mcg/kg/minute; titrate based on clinical end points (eg, MAP, endorgan perfusion) Non-weight-based dosing: Usual dosage range: 1 to 80 mcg/minute; titrate based on clinical end points (eg, MAP, endorgan perfusion Institutional infusion rates may vary	 Weight-based dosing: Initial: 0.05 to 0.15 mcg/kg/minute; titrate based on clinical end points (eg, MAP, endorgan perfusion); usual dosing range: 0.05 to 1 mcg/kg/minute Non-weight-based dosing (based on ~80 kg patient): Initial: 5 to 15 mcg/minute; titrate based on clinical end points (eg, MAP, end-organ perfusion); usual dosing range: 5 to 80 mcg/minute Institutional infusion rates may vary 	
Pharmacokinetics	Onset: Immediate Distribution: 1-2 minutes to reach peak Metabolism: rapid hepatic degradation Elimination: urine (inactive metabolites) Half-life: <5 minutes	Onset: Immediate Distribution: 1-2 minutes to reach peak Metabolism: rapid hepatic degradation Elimination: urine (inactive metabolites) Half-life: <5 minutes	
Adverse Effects	Tachyarrhythmias, myocardial ischemi	a, extravasation leading to necrosis,	

7/30/2025

Mechanism of Action	Receptor Activity	Pharmacological Action	Effect
	α agonist	Peripheral vasoconstriction	↑ myocardial and cerebral blood flow
	β agonist	↑ heart rate and contractility	↑ myocardial oxygen demand

Overview of Evidence						
Author (Year)	Study Design/Patient Population	Intervention	Results			
Bougouin, 2022	Retrospective N=766	Norepinephrine infusionEpinephrine infusion	 All-cause hospital mortality was significantly higher in the epinephrine group (OR 2.6; 95%CI 1.4-4.7; P = 0.002). Proportion of patients with CPC of 3-5 at hospital discharge was also higher with epinephrine 			
Weiss, 2021	Retrospective N=93	Norepinephrine infusionEpinephrine infusion	 Significantly more EPI patients had refractory hypotension, rearrest, or death in the emergency department (EPI 21/42, 50% vs. NE 10/45, 22.2%; P = 0.008) In an adjusted regression model, the odds of reaching the primary outcome in the ED were 3.94 [95%CI 1.38-12.2] (P = 0.013) times higher in the EPI group compared to NE treated patients. 			
Mion, 2014	Case report N=1	Epinephrine then transition to norepinephrine	 58 year male, The cardiac rhythm turned into a ventricular fibrillation (VF). That had reccurent v fib with epinephrine Return of spontaneous circulation was observed, with the recovering of sinusal activity. After staying for several weeks in intensive care unit because of multiorgan failure, the patient recovered without sequelae. 			
Kim, 2012	Retrospective N=90	Norepinephrine infusionEpinephrine infusion	 The survivors (N=46) were more likely to have received norepinephrine infusion than the non-survivors (34.8% vs 22.6%). Of those who had a prolonged arrest (more than ten minute down time, N=28) the survivors were also more likely to have received norepinephrine infusion (42.85% vs 25%). 			

Conclusions

- It's controversial as to whether epinephrine is preferred vasopressor post cardiac arrest.
 Norepinephrine is a reasonable agent to use post arrest if it is clinically warranted.

References

- Micromedex [Electronic version]. Greenwood Village, CO: Truven Health Analytics. Accessed 2022, March 15.
- http://www.micromedexsolutions.com/
- Callaway C. Epinephrine for cardiac arrest. *Current Opinion in Cardiology*. 2013;28(1):36-42.
- Epinephrine [package insert] Lake Forest, IL: Hospira, Inc.; 2019.
- (poster) Kim et al. THE BENEFIT OF NOREPINEPHRINE INFUSION FOR HEMODYNAMIC SUPPORT FOLLOWING CARDIOPULMONARY ARREST AND RESUSCITATION. Critical Care Medicine: December 2012 - Volume 40 - Issue 12 - p 1-328
- Mion Get al. Cardiac arrest: should we consider norepinephrine instead of epinephrine? Am J Emerg Med. 2014 Dec;32(12):1560.e1-2. PMID: 24997106.
- Weiss A, et ql. Comparison of Clinical Outcomes with Initial Norepinephrine or Epinephrine for Hemodynamic Support After Return of Spontaneous Circulation. Shock. 2021 Dec 1;56(6):988-993. PMID: 34172611.
- Bougouin W, et al. Epinephrine versus norepinephrine in cardiac arrest patients with postresuscitation shock. Intensive Care Med. 2022 Mar;48(3):300-310. PMID: 35129643.