PHARMACY & ACUTE CARE UNIVERSITY

The Pharmacologic Approach to Cardiac Arrest: A Focus on Vasopressors

Jimmy L. Pruitt III, PharmD Emergency Medicine Clinical Pharmacy Specialist Grady Health System

Objectives

- Discuss epidemiology, pathophysiology, and treatment for cardiac arrest
- Describe positive and negative effects of epinephrine during advanced cardiac life support and post-return of spontaneous circulation
- Analyze the evidence for epinephrine use in cardiac arrest

Disclosure

- The following individuals have nothing to disclose concerning possible financial or personal relationships with commercial entities (or their competitors) that may be referenced in this presentation:
- Writer/Presenter:
 - Jimmy L. Pruitt III, PharmD

Objectives

- Discuss the Epidemiology, Pathophysiology, And Vascular Management For Of Out Of Hospital Cardiac Arrest (OHCA)
- Describe the Positive And Negative Effects Of Epinephrine During Advanced Cardiac Life Support and Post-return Of Spontaneous Circulation
- List the evidence for epinephrine use in cardiac arrest
- Identify the interventions for (OHCA)

Abbreviations

- CPC: Cerebral performance category
- CPR: Cardiopulmonary resuscitation
- EMS: Emergency medical services
- EPI: Epinephrine
- ICU: Intensive care unit
- IHCA: In-hospital cardiac arrest
- OHCA: Out-of-hospital cardiac arrest
- mRS: modified Rankin Scale
- NE: Norepinephrine
- PEA: Pulseless electrical activity

- PE: Phenylephrine
- SCD: Sudden cardiac death
- SVR: Systemic vascular resistance
- TTM: Targeted temperature management
- VASO: Vasopressin
- VF: Ventricular fibrillation
- VT: Ventricular tachycardia

6

"I was overwhelmed by my lack of understanding of what was happening and baffled over the inefficiency of treatment. The cold sweaty skin and the pallor, the fading pulse, the high pulse rate, the sunken eyes and dilated pupils fixed themselves in my memory." George W. Crile 1906

EPIDEMIOLOGY

• Incidence of OHCA:

- o 356,461 in 2017
 - Adults: 347,322
 - Children: 7,037
- Initial Shockable Rhythm:
 18.7%
- OHCA Survivor to Discharge (overall):
 10.4%
- Survival with Good Functional Status:
 8.4%

Benjamin EM, et al. Heart Disease and Stroke Statistics—2019 Update. Circulation. 2019;139:00.

Pathophysiology

https://emedicine.medscape.com/article/151907-overview

Phases of Cardiac Arrest

Etiology

Cardiac	Hypothermia	Myocardial pump failure
Massive hemorrhage	Respiratory failure	Electrolyte derangement
	Drug toxicity/overdose	

Benjamin EM, et al. Heart Disease and Stroke Statistics—2019 Update. Circulation. 2019;139:00.

Survival Rates After OHCA

Benjamin EM, et al. Heart Disease and Stroke Statistics—2019 Update. Circulation. 2019;139:00.

Predictors for Survival

• CPR from a

bystander

Initial shockable

rhythm

ROSC prior to

hospital

sites

Defibrillator

available at public

Treatment for Cardiac Arrest

BLS

- High-quality cardiopulmonary resuscitation
 - Chest compressions are associated with increased survival to hospital discharge
 - Do not interrupt for vascular access, drug delivery, or advanced airway placement
- Defibrillation
- Ventilation
 - 1 breath every 6-8 seconds (10 breaths per minute)

Neumar RW, et al. Circulation. 2015 Nov 3;132(18 Suppl 2):S315-67.

Chest Compressions

- How to do Compressions?
 - Push hard and fast
 - > 2 inches (5 cm) deep
 - Allow for complete chest recoil
- NNT
 - 27-36

Defibrillation

- Only for shockable rhythms
- Associated with increase in survival
 - NNT
 - 4
- Biphasic preferred method
 - Energy (J) depends on device
 - Monophasic: 360 J
 - Biphasic: 120-200 J

2018 ACLS Algorithm

Monophasic: 360 J

Drug Therapy

- Epinephrine IV/IO dose: 1 mg every 3-5 minutes
- Amiodarone IV/IO dose: First dose: 300 mg bolus. Second dose: 150 mg. -OR-Lidocaine IV/IO dose: First dose: 1-1.5 mg/kg. Second dose: 0.5-0.75 mg/kg.

Advanced Airway

Vasopressors

- Purpose
 - \uparrow coronary perfusion pressure = \uparrow chance of ROSC
 - CPP< 15 mmHg = \downarrow ROSC
- Agents
 - Epinephrine
 - Phenylephrine
 - Norepinephrine
 - Vasopressin

Vasopressor Activity Chart

Agent	A ₁	B ₁	B ₂	DA	V1 + V2
Dopamine	+++	++++	++	++++	-
Epinephrine	++++	++++	+++	-	-
Norepinephrine	+++++	+++	++	-	-
Phenylephrine	+++++	-	-	-	-
Vasopressin	-	-	-		+++++
Dobutamine	+	++++	++	-	-
Isoproterenol	-	+++++	+++++		

Attaran RR, Ewy GA. Epinephrine in resuscitation: Curse or cure?. Future Cardiol 2010; 6(4):473-82.

Vasopressors in OHCA

Author, Year	Design	Dosing	Outcome
Eilfvast,1985	RCT Human n=65	EPI 0.5 mg vs PE 1 mg	No difference in successful resuscitation, bradycardia, or HTN
Lindner, 1989	Cohort Animal n=21	DOPA 2.5 mg/kg Vs EPI 45 mcg/kg Vs placebo	EPI ↑ ROSC in asphyxial arrest DOPA ↑ ROSC in VF arrest
Callaham, 1992	RCT Human n=816	EPI 15 mg Vs EPI 1 mg Vs NE 11 mg	 ↑ ROSC with EPI 15 mg, hospital discharge compared to EPI 1mg ↑ ROSC with NE 11 compared to EPI 1mg
Gueugniaud, 2008	RCT Human n=2894	EPI 1 mg + VASO 40 units Vs EPI 1 mg	No difference in hospital admission, ROSC, hospital discharge, 1 year mortality, and good neurological recover at discharge

Attaran RR, Ewy GA. Epinephrine in resuscitation: Curse or cure?. *Future Cardiol* 2010; 6(4):473-82.

EPI Dose

Author	Design	Dose	Outcome
Brown, 1992	RCT	EPI 0.02 mg/kg (SDA)	No difference in ROSC, Hospital admission, discharge from hospital
	n =1280	EPI 0.2 mg/kg (HDA)	
Choux, 1995	RCT	EPI 1 mg (SDA)	No difference in ROSC, Hospital admission, discharge from hospital,
	n = 536	EPI 5 mg (HDA)	neurological function
Fisk, 2018	Observational	EPI 1 mg	No difference in ROSC, discharge from hospital, neurological function
	n=2255	EPI 0.5 mg	
Gueugniaud, 1998	RCT n = 3327	EPI 1 mg (SDA)	EPI 5 mg 个 ROSC , 个 hospital discharge compared to EPI 1 mg
		EPI 5 mg (HDA)	No Difference in hospital discharge and neurological function
Stiell, 1992	RCT	EPI 1 mg (SDA)	No difference in 1 hr survival, hospital discharge, or neurological function
	n = 335	EPI 7 mg (HDA)	

Epinephrine Pros

- Alpha₁
 - Arterial vasoconstriction
 - Venous vasoconstriction
 - Coronary vasoconstriction
- Alpha₂
 - Venous vasoconstriction
- \uparrow SVR = \uparrow CPP + \uparrow oxygen delivery

Epinephrine Cons

- Alpha₁
 - ↑ Cerebral constriction
- Beta₁ + Beta₂
 - ↑ Inotropy
 - ↑ Oxygen demand
 - \uparrow Recurrent VF
 - ↑ Clotting

Attaran RR, et al. *Future Cardiol* 2010; 6(4):473-82. https://www.emojirequest.com/r/ThumbsDownEmoji

Objectives

- Discuss epidemiology, pathophysiology, and treatment for cardiac arrest
- Describe positive and negative effects of epinephrine during advanced cardiac life support and post-return of spontaneous circulation
- Analyze evidence for epinephrine use in cardiac arrest
- Review the interventions for post-arrest care

"Crile recorded the animal's last heart beat and respiration and after 15 min he injected adrenaline with salt solution into the carotid arteries and performed chest compressions. Less than 3 min later, the dog was as alive as he had been a half hour before." - 1906

Soto-Ruiz KM. Resuscitation. 2009 Jan;80(1):6-8. https://mhc.andornot.com/en/list?q=%2Brepository%3APharmacy&p=2&ps=20&sort=title_sort%20asc

Primary Outcomes That Matter!

EPI Evidence

Author	Year	Design	Outcome (EPI vs Comparator)
Holmberg et al.	2002	Observational	个 Mortality
Stiell et al. (OPALS)	2004	Observational	↑ ROSC ↔neurological intact survival
Ong et al.	2007	Observational	\leftrightarrow neurological intact survival
Olasveengen et al.	2009	RCT	↑ ROSC ↔/↑* neurological intact survival
Jacobs et al.	2011	RCT	↑ ROSC ↔ neurological intact survival
Hagihara et al.	2012	Observational	↑ ROSC ↓ neurological intact survival
Nakahara et al.	2013	Observational	\leftrightarrow neurological intact survival or Mortality
Dumas et al.	2014	Observational	↓ Neuro intact survival
Sanghavi et al.	2015	Observational	↑ Mortality ↓ Neuro intact survival
Perkins, 2018 (PARAMEDIC-2)	2018	RCT	??

ORIGINAL ARTICLE

Advanced Cardiac Life Support in Out-of-Hospital Cardiac Arrest

Ian G. Stiell, M.D., George A. Wells, Ph.D., Brian Field, A.C.P., M.B.A., Daniel W. Spaite, M.D., Lisa P. Nesbitt, M.H.A., Valerie J. De Maio, M.D., Graham Nichol, M.D., M.P.H., Donna Cousineau, B.Sc.N., Josée Blackburn, B.Sc., Doug Munkley, M.D., Lorraine Luinstra-Toohey, B.Sc.N., M.H.A.,

Objective

• Determine effect of EPI on survival to hospital discharge in OHCA

Stiell IG. N Engl J Med. 2004 Aug 12;351(7):647-56.

Methods

Stiell IG. N Engl J Med. 2004 Aug 12;351(7):647-56.

Methods

Primary Outcome

• Survival to hospital discharge

Secondary Outcome

- Pre-hospital ROSC (ROSC in the field for greater 30s)
- Admission to hospital
- Survivors' cerebral performance category, level 1
- Survivors' Health Utility Index, Mark III, at one year

Statistics

- Sample size required 2213 patients per group
- Alpha 0.05 (two tailed) and power of 80%
- Pearson's chi-square and t-test (or Mann–Whitney) for categorical and continuous data respectively

Intervention

Patients

>16 years old in out-of-hospital cardiac arrest

Intervention

• EMS delivered ACLS

Comparison

• EMS delivered BLS

Baseline Characteristics					
	Rapid-Defibrillation Phase	Advanced-Life-Support Phase			
Age (mean, years) ± SD	68.9±14.4	69.3±14.6			
Male, n (%)	936 (67.3)	2823 (66.5)			
Arrest witnessed by bystander, n (%)	649 (46.7)	1737 (40.9)			
Arrest witnessed by EMS personnel, n (%)	119 (8.6)	411 (9.7)			
 Initial cardiac rhythm — no./total no. (%) Ventricular fibrillation or tachycardia Pulseless electrical activity Asystole 	480/1357 (34.5) 350/1357 (25.8) 527/1357 (38.8)	1339/4094 (31.5) 1036/4094 (25.3) 1719/4094 (42.0)			
CPR by bystander, n (%)	220 (15.8)	612 (14 <mark>4</mark>)			
CPR by first responder, n (%)	470 (33.8)	1679 (39.5)			
First responder preceded EMS to scene, n (%)	1161/1258 (92.3)	3576/3817 (93.7)			
Defibrillator to scene in ≤8 min, n (%)	401/1214 (33.0)	1454/3655 (39.8)			
IV medications administered — no. (%) -Epinephrine -Atropine -Lidocaine -Dopamine -Bicarbonate	- - - -	3583 (95.8) 3267 (87.3) 882 (23.6) 105 (2.8) 92 (2.5)			

Outcomes			
	Rapid-Defibrillation Phase (n=1391)	Advanced-Life-Support Phase (n=4247)	P Value
Primary Outcome			
Survival to hospital discharge, No.(%)	69 (5.0)	217 (5.1)	0.83
Secondary Outcomes			
Return of spontaneous circulation, No.(%)	180 (12.9)		<0.001
Admission to hospital, No.(%)	152 (10.9)	621 (14.6)	<0.001
Survivors' cerebral performance category, level 1, No.(%)	54 (78.3)	145 (66.8)	0.73
Survivors' Health Utility Index, Mark III, at one year, Median	0.84	0.79	0.67

Author's Conclusion

In conclusion, systematic introduction of ACLS programs to an EMS system that had previously optimized its rapid-defibrillation program did not decrease mortality or morbidity associated with cardiac arrest.

Strengths & Limitations

Strengths Before and After Design Patient centered outcome

Limitations

- Observational
- Did not isolate EPI
- Confounders not adjusted for

Prehospital Epinephrine Use and Survival Among Patients With Out-of-Hospital Cardiac Arrest

Akihito Hagihara, DMSc, MPH
Manabu Hasegawa, MD
Takeru Abe, MA
Takashi Nagata, MD
Yoshifumi Wakata, MD
Shogo Miyazaki, PhD

ion for out-ofhospital cardiac arrest (OHCA). However, the effectiveness of epinephrine use before hospital arrival has not been established.

Objective To evaluate the association between epinephrine use before hospital arrival and short- and long-term mortality in patients with cardiac arrest.

Design, Setting, and Participants Prospective, nonrandomized, observational propensity analysis of data from 417 188 OHCAs occurring in 2005-2008 in Japan in which

Objective

 To evaluate the association between epinephrine use before hospital arrival and short and long term mortality in cardiac arrest

Primary Outcome

- pROSC
- One-month survival
- One-month survival with favorable CPC of 1-2
- Survival with no, mild, or moderate neurological disability

Statistics

- 2-sided at the 5% level
- Propensity score to control potential confounding and selection bias
- Estimated actual 1-month survival rate of 5.4% in the intravenous epinephrine group and 4.7% in the no epinephrine group
- 15,030 samples for each group provided a power level of 92.0%

Intervention

Patients

• Adult Japanese patients in OHCA

Intervention

• Epinephrine

Comparison

• No Epinephrine

Baseline Characteristics					
	EPI (n = 13,401)	No EPI (n = 13,401)			
	Mean (%)	Mean (%)			
Age, mean (SD), y	72.43 (15.5)	72.40 (15.7)			
Male	8480 (63.3)	8427 (62.9)			
Bystander eyewitness	5854 (43.7)	5918 (44.2)			
Family member bystander eyewitness	4519 (33.7)	4533 (33.8)			
 Origin of cardiac arrest Cardiac Noncardiac 	8039 (60.0) 5362 (40.0)	7984 (59.6) 5417 (40.4)			
Bystander chest compression	5854 (43.7)	5918 (44.2)			
 Life support by EMS personnel Physician present in ambulance Advanced life support performed by physician 	13, 316 (99.4) 811 (6.1) 2122 (15.8)	13 308 (99.3) 873 (6.5) 2233 (16.7)			
Time from call to arrival at scene, mean (SD), min Time from call to arrival at hospital, mean (SD), min	7.50 (4.0) 37.92 (13.2)	7.47 (4.0) 37.66 (18.3)			
 First documented rhythm VF/pVT PEA/asystole 	1758 (13.1) 11 643 (86.9)	1781 (13.3) 11 620 (86.7)			
Defibrillation by EMS personnel	2610 (19.5)	2602 (19.4)			
Use of advanced life support devices	10 294 (76.8)	10 290 (76.8)			
Insertion of intravenous line	12 868 (96.0)	12 865 (96.0)			

Hagihara A. JAMA. 2012 Mar 21;307(11):1161-8.

EPI vs No-EPI

Outcomes	OR (95% CI)					
Unconditional Logistic Regression Analyses						
	ROSC1-month survivalCPC 1-2OPC 1-2					
Unadjusted	3.75 (3.59-3.91)	1.15 (1.07-1.23)	0.61 (0.53-0.70)	0.63 (0.55-0.73)		
Adjusted for selected variables	3.06 (2.93-3.21)	0.43 (0.39-0.46)	0.21 (0.18-0.24)	0.22 (0.19-0.25)		
Adjusted for all covariates	2.36 (2.22-2.50)	0.46 (0.42-0.51)	0.31 (0.26-0.36)	0.32 (0.27-0.38)		

Figure 2. Results of Unconditional Logistic Regression Analyses Comparing Prehospital Epinephrine Use vs No Prehospital Epinephrine Use in Patients With Out-of-Hospital Cardiac Arrest

		No. (%) V	Vith Outcome		
Nodel	Total No. of Cases	Epinephrine	No Epinephrine	Odds Ratio (95% Cl)	Favors No Eavors Prehospital Prehospital Epinephrine Epinephrine
Unadjusted Adjusted for selected variables ^a Adjusted for all covariates ^b	417 155 412 078 391 046	2786 (18.5) 2692 (18.6) 2556 (18.6)	23 042 (5.7) 22 804 (5.7) 21 629 (5.7)	3.75 (3.59-3.91) 3.06 (2.93-3.21) 2.36 (2.22-2.50)	
1-Month survival Unadjusted Adjusted for selected variables ^a Adjusted for all covariates ^b	417 186 412 078 391 046	805 (5.4) 772 (5.3) 733 (5.3)	18 906 (4.7) 18 637 (4.7) 17 677 (4.7)	1.15 (1.07-1.23) 0.43 (0.39-0.46) 0.46 (0.42-0.51)	-
CPC 1 or 2 Unadjusted Adjusted for selected variables ^a Adjusted for all covariates ^b	417 187 412 078 391 046	205 (1.4) 197 (1.4) 187 (1.4)	8903 (2.2) 8781 (2.2) 8329 (2.2)	0.61 (0.53-0.70) 0.21 (0.18-0.24) 0.31 (0.26-0.36)	
OPC 1 or 2 Unadjusted Adjusted for selected variables ^a Adjusted for all covariates ^b	417 187 412 078 391 046	211 (1.4) 202 (1.4) 192 (1.4)	8831 (2.2) 8710 (2.2) 37732 (2.2)	0.63 (0.55-0.73) 0.22 (0.19-0.25) 0.32 (0.27-0.38)	-
					0.1 1.0

Odds Ratio (95% CI)

Hagihara A. JAMA. 2012 Mar 21;307(11):1161-8.

Outcomes	OR (95% CI)						
	Conditional Logi	Conditional Logistic Regression Analysis					
	ROSC	1-month survival	CPC 1-2	OPC 1-2			
Unadjusted	1.91 (1.78-2.05)	0.71 (0.64-0.79)	0.41 (0.34-0.49)	0.43 (0.36-0.51)			
Adjusted for propensity	2.01 (1.83-2.21)	0.71 (0.62-0.81)	0.41 (0.33-0.52)	0.43 (0.34-0.54)			
Adjusted for propensity and selected variables	2.24 (2.03-2.48)	0.60 (0.49-0.74)	0.40 (0.26-0.63)	0.43 (0.28-0.66)			
Adjusted for propensity and all covariates	2.51 (2.24-2.80)	0.54 (0.43-0.68)	0.21 (0.10-0.44)	0.23 (0.11-0.45)			

Figure 3. Results of Conditional Logistic Regression Analyses Comparing Prehospital Epinephrine Use vs No Prehospital Epinephrine Use in Propensity-Matched Patients With Out-of-Hospital Cardiac Arrest

		No. (%) V	Vith Outcome			
Model ROSC Unadjusted	Total No. of Cases 26802	Epinephrine 2446 (18.3)	No Epinephrine 1400 (10.5)	Odds Ratio (95% CI) 1.91 (1.78-2.05)	Favors No Prehospital Epinephrine	Favors Prehospital Epinephrine
Adjusted for propensity Adjusted for propensity and selected variables ^a Adjusted for all covariates ^b				2.01 (1.83-2.21) 2.24 (2.03-2.48) 2.51 (2.24-2.80)		* *
1-Month survival Unadjusted Adjusted for propensity Adjusted for propensity and selected variables ^a Adjusted for all covariates ^b	26802	687 (5.1)	944 (7.0)	0.71 (0.64-0.79) 0.71 (0.62-0.81) 0.60 (0.49-0.74) 0.54 (0.43-0.68)		
CPC 1 or 2 Unadjusted Adjusted for propensity Adjusted for propensity and selected variables ^a Adjusted for all covariates ^b	26802	173 (1.3)	413 (3.1)	0.41 (0.34-0.49) 0.41 (0.33-0.52) 0.40 (0.26-0.63) 0.21 (0.10-0.44)	*	
OPC 1 or 2 Unadjusted Adjusted for propensity Adjusted for propensity and selected variables ^a Adjusted for all covariates ^b	26802	178 (1.3)	410 (3.1)	0.43 (0.36-0.51) 0.43 (0.34-0.54) 0.43 (0.28-0.66) 0.23 (0.11-0.45)		
					0.1 1	.0 10
					Odds Rati	0 (95% CI)

Author's Conclusion

Among patients with OHCA in Japan, use of prehospital epinephrine was significantly associated with increased chance of return of spontaneous circulation before hospital arrival but decreased chance of survival and good functional outcomes 1 month after the event.

Strengths & Limitations

NIH Public Access Author Manuscript

PHARMA JAMA Intern Med. Author manuscript; available in PMC 2015 August 01.

Published in final edited form as:

JAMA Intern Med. 2015 February 1; 175(2): 196-204. doi:10.1001/jamainternmed.2014.5420.

Outcomes After Out-of-Hospital Cardiac Arrest Treated by Basic vs Advanced Life Support

Prachi Sanghavi, BS, Anupam B. Jena, MD, PhD, Joseph P. Newhouse, PhD, and Alan M. Zaslavsky, PhD

Objective

• To compare the effects of BLS and ACLS on outcomes after out-of-hospital cardiac arrest.

Primary Outcome

• Survival to hospital discharge, 30 days, and 90 days

Secondary Outcome

- Neurological performance (CPC)
- Medical spending

Statistics

- Propensity score regression
- 2-sided at the 5% level
- Kaplan-Meier survival curves were prepared from the weighted observations

Intervention

Patients

• Medicare beneficiaries from non-rural areas in OHCA

Intervention

• ACLS-trained providers

Comparison

• BLS-trained providers

P

Baseline Characteristics				
	BLS (n = 1643)	ALS (n = 31,292)	P value	
Age (years)	77	75	<0.001	
Female (%)	52	46	<0.001	
Ambulance mileage, mean, km	8.7	9.5	0.002	
Pickup location, % -Residence -Skilled nursing facility -Scene -Non–skilled nursing facility nursing home	55 27 14 5	65 14 17 4	0.05 0.06	
Comorbidity score, mean	5.5	4.8	<0.001	
 Past Medical History -Acute myocardial infarction -Atrial fibrillation -Chronic kidney disease -Heart failure -Diabetes mellitus -Ischemic heart disease -Stroke or transient ischemic attack 	13 30 53 66 58 75 32	14 29 48 62 53 72 27	0.17 0.25 <0.001 0.01 <0.001 <0.001 <0.001	

Outcomes			
	BLS % (95% CI)	ACLS % (95% CI)	Ratio (95 %CI)
<u>Unadjusted Outcomes</u> -Survival to hospital discharge -Survival to 30 d -Survival to 90 d	13.1 (11.5-14.8) 9.6 (8.1-11) 8.0 (6.7–9.3)	9.6 (9.3-9.9) 6.5 (6.2-6.8) 5.8 (5.5-6.1)	1.4 (1.2-1.5) 1.5 (1.2-1.7) 1.4 (1.2-1.6)
Adjusted Outcomes -Survival to hospital discharge -Survival to 30 d -Survival to 90 d -Survival to 1 yr -Survival to 2 yr	13.1 (11.5-14.8) 9.6 (8.1-11) 8.0 (6.7–9.3) 6.2 (4.9-7.6) 6.8 (4.8-8.9)	9.2 (8.7-9.7) 6.2 (5.8-6.6) 5.4 (5.0-5.8) 4.4 (4.0-4.8) 3.9 (3.3-4.5)	1.4 (1.2-1.6) 1.5 (1.3-1.8) 1.5 (1.2-1.8) 1.4 (1.1-1.8) 1.7 (1.2-2.4)
Secondary Outcomes			
Poor neurological performance	6.1 (5.0–7.3)	9.7 (9.1-10.2)	0.6 (0.5–0.8)
Admission to hospital	25.4 (23.3-27.5)	20.5 (19.8-21.2)	1.2 (1.1–1.4)
1-y Medical spending for all beneficiaries	\$ 11,875	\$ 9097	1.3 (1.1-1.6)

Author's Conclusion

Our study calls into question the widespread assumption that advanced prehospital care improves outcomes of out-of-hospital cardiac arrest relative to care following the principles of BLS, including rapid transport and basic interventions such as effective chest compressions, bag valve mask ventilation, and automated external defibrillation.

Strengths & Limitations

Strengths

- Large sample size
- Relevant outcomes

Limitations

- Observational data
- CPR quality and time to EPI administration not assessed
- Did not isolate EPI
- Confounders not adjusted for

Contents lists available at ScienceDirect

Resuscitation

journal homepage: www.elsevier.com/locate/resuscitation

Clinical paper

Effect of adrenaline on survival in out-of-hospital cardiac arrest: A randomised double-blind placebo-controlled trial $^{\rm trial}$

Ian G. Jacobs^{a,c,*}, Judith C. Finn^{a,c}, George A. Jelinek^b, Harry F. Oxer^c, Peter L. Thompson^{d,e}

^a Discipline of Emergency Medicine (M516), University of Western Australia, 35 Stirling Highway, Crawley, 6009 Western Australia, Australia

^b Department of Medicine, University of Melbourne (St Vincents Hospital), Victoria Parade, Fitzroy, 3065 Melbourne, Australia

^c St John Ambulance (Western Australia), PO Box 183, Belmont 6984, Western Australia, Australia

^d School of Medicine and Population Health, University of Western Australia, Western Australia, Australia

^e Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, 6009 Western Australia, Australia

Objective

 To determine the effect of adrenaline on patient survival to hospital discharge in out of hospital cardiac arrest

Primary Outcome

• Survival to hospital discharge

Secondary Outcome

- Pre-hospital ROSC (ROSC in the field for greater 30s)
- CPC at hospital discharge

Statistics

- Sample size required 2213 patients per group
- Alpha 0.05 (two tailed) and power of 80%
- Pearson's chi-square and t-test (or Mann–Whitney) for categorical and continuous data respectively

Intervention

Patients

• >18 years old in out-of-hospital cardiac arrest

Intervention

• IV Epinephrine 1 mg

Comparison

• Placebo (sodium chloride 0.9%)

Baseline Characteristics				
	Placebo (n = 262)	Adrenaline (n = 272)	P value	
Age (years), mean (SD)	64.9 (17.4)	64.3 (17.5)	0.69	
Male, n (%)	196(74.8)	193(71.0)	0.33	
Cardiac etiology: n (%)	242 (92.4)	246 (90.4)	0.43	
Cardiac arrest witnessed: n (%) -Bystander -Paramedic	138 (52.7) 14 (5.3)	120 (44.1) 26 (9.6)	0.05 0.06	
Bystander CPR, n (%)	129 (49.2)	144 (52.9)	0.39	
Initial cardiac arrest rhythm: n (%) -VF/VT -PEA -Asystole	126 (48.1) 70 (26.7) 66 (25.2)	119 (43.8) 91 (33.5) 62 (22.8)	0.24	
EMS response interval (min): mean (SD)	10.2 (7.3)	10.1 (5.5)	0.76	
Airway management: n (%) -Tracheal intubation -Laryngeal mask airway	198 (75.6) 61 (23.3)	192 (70.6) 66 (24.3)	0.19 0.79	
Volume of trial drug (ml): median (IQR)	5.0 (3.0-8.0)	5.0 (3.0–7.0)	0.13	
Volume of IV fluids administered (ml): median (IQR)	500 (237–700)	500 (200–700)	0.28	
Transported to hospital: n (%)	215 (82.1)	241 (88.6)	0.03	

Outcomes				
	Placebo (n = 262)	Adrenaline (n = 272)	P Value	
Primary Outcome				
Survival to hospital discharge, No.(%)	5 (1.9)	11 (4.0)	0.15	
Secondary Outcomes				
Return of spontaneous circulation, No.(%)	22 (8.4)	64 (23.5)	<0.001	
Admission to hospital, No.(%)	34 (13.0)	69 (25.4)	<0.001	
CPC 1 or 2, No.(%)	5 (100)	9 (81.8)	0.31	

Author's Conclusion

Patients receiving adrenaline during cardiac arrest had no statistically significant improvement in the primary outcome of survival to hospital discharge although there was a significantly improved likelihood of achieving ROSC.

A Randomized Trial of Epinephrine in Out-of-Hospital Cardiac Arrest

G.D. Perkins, C. Ji, C.D. Deakin, T. Quinn, J.P. Nolan, C. Scomparin, S. Regan,
J. Long, A. Slowther, H. Pocock, J.J.M. Black, F. Moore, R.T. Fothergill, N. Rees,
L. O'Shea, M. Docherty, I. Gunson, K. Han, K. Charlton, J. Finn, S. Petrou,
N. Stallard, S. Gates, and R. Lall, for the PARAMEDIC2 Collaborators*

Objective

• In adult patients that present to paramedics with out-ofhospital arrest in the field, does acute cardiac life support performed with epinephrine as compared to placebo lead to improved survival and neurological outcome.

Design

• Multicenter, double-blind, randomized trial

Funding

• Health Technology Assessment Programme of the U.K National Institute for Health Research

Setting

• Five National Health Service ambulance services in the United Kingdom

Duration

• December 2014 through October 2017

Primary Outcome

• Survival at 30 days

Secondary Outcome

- Survival until hospital admission
- Median length of stay in ICU (IQR) days
- Median length of hospital stay
- Survival until hospital discharge
- Favorable neurologic outcome at hospital discharge
- Survival at 3 mo
- Favorable neurologic outcome at 3 mo

Statistics

- 8000 patients would provide the best threshold to balance precision and practicality.
- Data and safety monitoring committee performed interim reviews every 3 months
- Intention-to-treat population
- Bayesian analysis for the primary outcome and for survival with a favorable neurologic outcome

Intervention

Patients

 Adult patients with OHCA receiving ACLS provided by trial-trained paramedics

Intervention

• IV epinephrine 1mg q3 – 5min + standard care

Comparison

• IV 0.9% normal saline bolus + standard care

	Time Intervals That Matter									
PHARMA		EPI (n = 4015)	Placebo (n = 3999)							
	Interval between emergency call and EMS arrival									
	• Median (IQR) — min	6.7 (4.3–9.7)	6.6 (4.2–9.6)							
	 Interval between emergency call and admin of trial agent Median (IQR) — min 									
		21.5 (16.0–27.3)	21.1 (16.1–27.4)							
	 Interval between ambulance arrival at scene and departure Mean — min 									
		50.1±21.8	44.5±18.3							
	Interval between ambulance departure from scene and hospital arrival									
	• Mean — min	12.9±9.8	12.4±8.9							
	Median interval between initiation of advanced life support and cessation (IQR) — min	47.5 (35.1–64.0)	43.1 (33.5–56.1)							
	 Return of spontaneous circulation — no. (%) Yes No Missing data 	1457 (36.3) 2518 (62.7) 40 (1.0)	468 (11.7) 3492 (87.3) 39 (1.0)							
	 Transportation of patient to hospital — no. (%) Yes No 	2041 (50.8) 1974 (49.2)	1227 (30.7) 2772 (69.3)							
	Baseline Characteristics									
------------	---	--	--	--	--	--	--	--	--	--
PHARMACY &		EPI (n = 4015)	Placebo (n = 3999)							
	Mean age ±SD — yr	69.7±16.6	69.8±16.4							
	Sex — no. (%) • Male	2609 (65.0)	2584 (64.6)							
	Initial cardiac rhythm — no. (%)									
	ShockableNonshockable	770 (19.2) 3149 (78.4)	748 (18.7) 3181 (79.5)							
	 Cause of cardiac arrest — no. (%) Medical cause Traumatic cause Drug overdose Asphyxia Other 	3656 (91.1) 66 (1.6) 74 (1.8) 117 (2.9) 102 (2.6)	3691 (92.3) 57 (1.4) 72 (1.8) 81 (2.0) 180 (4.5)							
	 Witness of cardiac arrest — no. (%) None Paramedic Bystander Not identified Missing data 	1498 (37.3) 452 (11.3) 2013 (50.1) 1 (<0.1) 51 (1.3)	1505 (37.6) 470 (11.8) 1967 (49.2) 1 (<0.1) 56 (1.4)							
	CPR performed — no. (%)									
	 By bystander By paramedic during witnessed event 	2382 (59.3) 452 (11.3)	2349 (58.7) 470 (11.8)							
	 Not identified Missing data 	1 (<0.1) 69 (1.7)	1 (<0.1) 84 (2.1)							

European Resuscitation Council's (ERC) Guidelines

In shockable rhythms

• Epinephrine is administered after 3 shocks

In non-shockable rhythms

• Epinephrine is administered as soon as possible

Lloyd G. Br J Hosp Med (Lond). 2015 Dec;76(12):678

P	Outcomes				
PHARMACY &		EPI (n = 4015)	Placebo (n = 3999)	Odds Ratio (95% CI)	
		no./total no. (%)	no./total no. (%)	Unadjusted	Adjusted
	Secondary Outcomes			_	
	Survival until hospital admission	947/3973 (23.8)	319/3982 (8.0)	3.59 (3.14–4.12)	3.83 (3.30–4.43)
	Median ICU LOSPatients who survivedPatients who died	7.5 (3.0–15.0) 2.0 (1.0–5.0)		NA	NA
	Median hospital LOSPatients who survivedPatients who died	21.0 (10.0–41.0) 0	20.0 (9.0–38.0) 0	NA	NA
	Survival until hospital discharge	128/4009 (3.2)	91/3995 (2.3)	1.41 (1.08–1.86)	1.48 (1.10–2.00)
	Favorable neurologic outcome at hospital Discharge	87/4007 (2.2)	74/3994 (1.9)	1.18 (0.86–1.61)	1.19 (0.85–1.68)
	Survival at 3 mo	121/4009 (3.0)	86/3991 (2.2)	1.41 (1.07–1.87)	1.47 (1.08–2.00)
	Favorable neurologic outcome at 3 mo Sanghavi P. JAMA Intern Med. 2015 Feb;175(2):19	82/3986 (2.1) 96-204.	63/3979 (1.6)	1.31 (0.94–1.82)	1.39 (0.97–2.01)

Neurologic Impairment

Figure 2. Survival with a Favorable Neurologic Outcome at Hospital Discharge.

Author's Conclusion

In conclusion, in this randomized trial involving patients with out-of-hospital cardiac arrest, the use of epinephrine resulted in a significantly higher rate of survival at 30 days than the use of placebo, but there was no significant between group difference in the rate of a favorable neurologic outcome because more survivors had severe neurologic impairment in the epinephrine group.

Strengths & Limitations

RCT Relevant outcomes Strong design

Limitations

- Low survival rate
- Post-arrest in-hospital management was not controlled for nor measured
- Time to drug administration was longer as compared to other trials

https://library.triton.edu/c.php?g=433673&p=3720267

Increased return of spontaneous circulation at the expense of neurologic outcomes: Is prehospital epinephrine for out-of-hospital cardiac arrest really worth it?

Rohit Seth Loomba, MD^{a,*}, Karan Nijhawan, BS^b, Saurabh Aggarwal, MD^c, Rohit Romesh Arora, MD^d

^a Division of Cardiology, Children's Hospital of Wisconsin/Medical College of Wisconsin, Milwaukee, WI

^b Division of Medicine, Rush University Medical Center, Chicago, IL

P

PHARMACY &

^c Division of Cardiology, Creighton University Medical Center, Omaha, NE

^d Division of Cardiology, Chicago Medical School, North Chicago, IL

Comparison of survival at 1 month

	Epineph	nrine	No epine	ephrine		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Fukuda et al	51	770	376	6301	17.2%	1.12 [0.83, 1.51]	-
Goto et al	1277	23676	7157	185901	21.9%	1.42 [1.34, 1.51]	+
Hagihara et al	805	15030	18906	402158	21.8%	1.15 [1.07, 1.23]	-
Hayashi et al	137	1013	258	2148	19.2%	1.15 [0.92, 1.43]	
Holmberg et al	156	4566	388	6207	19.9%	0.53 [0.44, 0.64]	
Total (95% CI)		45055		602715	100.0 %	1.03 [0.79, 1.34]	
Total events	2426		27085				
Heterogeneity: Tau ² = 0.08; Chi ² = 102.02, df = 4 (<i>P</i> < .00001); I ² = 96%						05 07 1 16 2	
Test for overall effect: Z = 0.19 (P = .85)						Favours no epinephrine Favours epinephrine	

Fig. 3. Forest plot comparing survival at 1 month between those who had and had not received epinephrine.

Loomba RS. J Crit Care. 2015 Dec;30(6):1376-81.

PHARMACY &

С

Increased return of spontaneous circulation at the expense of neurologic outcomes: Is prehospital epinephrine for out-of-hospital cardiac arrest really worth it?

Rohit Seth Loomba, MD^{a,*}, Karan Nijhawan, BS^b, Saurabh Aggarwal, MD^c, Rohit Romesh Arora, MD^d

^a Division of Cardiology, Children's Hospital of Wisconsin/Medical College of Wisconsin, Milwaukee, WI

^b Division of Medicine, Rush University Medical Center, Chicago, IL

^c Division of Cardiology, Creighton University Medical Center, Omaha, NE

^d Division of Cardiology, Chicago Medical School, North Chicago, IL

Comparison of neurological outcome at discharge

	Epinep	hrine	No epine	ephrine		Odds Ratio	Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl	
Dumas et al	194	1134	255	422	14.1%	0.14 [0.11, 0.17]		
Fukuda et al	5	770	113	6301	9.9%	0.36 [0.15, 0.88]		
Goto et al	340	23676	3379	185901	14.5%	0.79 [0.70, 0.88]	+	
Hagihara et al	205	15030	8903	402158	14.4%	0.61 [0.53, 0.70]		
Hayashi et al	42	1013	130	2148	13.6%	0.67 [0.47, 0.96]		
Jacobs et al	9	272	5	262	8.5%	1.76 [0.58, 5.32]		
Machida et al	2	49	28	443	6.5%	0.63 [0.15, 2.73]	· · · · · · · · · · · · · · · · · · ·	
Olasveengen et al	7	367	57	481	10.6%	0.14 [0.07, 0.32]		
Ong et al	9	681	4	615	8.0%	2.05 [0.63, 6.68]		
Total (95% CI)		42992		598731	100.0 %	0.51 [0.31, 0.84]		
Total events 813 12874								
Test for every light fact $7 = 2.64 (P = 0.00)$							0.1 0.2 0.5 1 2 5 1	0
restion overall ellect.	2 - 2.04	(/008	<i>b)</i>				Favours no epinephrine Favours epinephrine	

Fig. 5. Forest plot comparing positive neurologic outcome at discharge between those who had and had not received epinephrine.

Objectives

- Discuss epidemiology, pathophysiology, and treatment for cardiac arrest
- Describe positive and negative effects of epinephrine during advanced cardiac life support and post-return of spontaneous circulation
- Analyze evidence for epinephrine use in cardiac arrest
- Review the interventions for post-arrest care

"When about a quarter of fluid has passed into the blood vessels, 15–30 minims of a one to one thousands adrenaline solution are injected into the vessel" – George W. Crile 1906

TTM

- ACLS Guidelines
 - Recommend that comatose adult patients with ROSC after cardiac arrest have TTM
 - Class I, LOE B-R for VF/pVT OHCA
 - Class I, LOE C-EO for non-VF/pVT
 - Nonshockable and in-hospital cardiac arrest
 - Studies report NNT 8 for good neurological outcome

What About the Catheterization Suite?

- Significant disease identified in 57% of patients without acute ischemic ECG changes
- Coronary angiography increased good clinical outcome OR 2.16 (95% CI 1.12- 4.19) P < 0.02

Summary of Interventions

Bystander CPR

• NNT 24-36

ACLS Recommendations

Standard-dose epinephrine (1 mg every 3 to 5 minutes) may be reasonable for patients in cardiac arrest (Class IIb, LOE B-R).

Presenter's Opinion

EPI MAY be used to achieve ROSC	EPI has been used in OHCA since 1960s	EPI should not delay or minimize focus on therapies with proven benefit

The dose, route, timing of EPI needs further research EPI may not be the preferred vasopressor

Summary

EPI has been used in CPR since the 1970's despite weak and conflicting evidence

Current literature has failed to consistently find benefit from EPI in long-term outcomes (survival to hospital discharge and good neurological outcomes)

We need more trials with optimal study design and patient-centered outcomes

- What is the most common presenting rhythm in cardiac arrest?
 - A. PEA/ Asystole
 - B. Ventricular Fibrillation
 - C. Bradycardia
 - D. Supraventricular tachycardia

- What is the most common presenting rhythm in cardiac arrest?
 - A. **PEA/ Asystole**
 - B. Ventricular Fibrillation
 - C. Bradycardia
 - D. Supraventricular tachycardia3
- Answer: PEA/Asystole is the most common presentation of cardiac arrest

- What is the most dose of epinephrine utilized in cardiac arrest?
 - A. 2 mg
 - B. 1 mg
 - C. 0.5 mg
 - D. 10 mcg

- What is the most dose of epinephrine utilized in cardiac arrest?
 - A. 2 mg
 - B. 1 mg
 - C. 0.5 mg
 - D. 10 mcg
- Answer: 1 mg is the most common dose of epinephrine used in cardiac arrest

- True or False. There is a significant amount of clinical literature that reports that epinephrine increase the odds of patients being discharged with good neurological outcomes.
 - A. True
 - B. False

- True or False. There is a significant amount of clinical literature that reports that epinephrine increase the odds of patients being discharged with good neurological outcomes.
 - A. True
 - B. False
- Answer: false, epinephrine has not be consistently proven to increase the odds of discharge with good neurological outcomes.

- True or False. The PARAMEDIC 2 trial displayed a significant finding that epinephrine increase the odds of patients obtaining ROSC compared to placebo.
 - A. True
 - B. False

- True or False. The PARAMEDIC 2 trial displayed a significant finding that epinephrine increase the odds of patients obtaining ROSC compared to placebo.
 - A. True
 - B. False
 - Answer: True, epinephrine was shown to increase the odds of obtaining return of spontaneous circulation compared to placebo.

GEORGE OLIVER, M.D

Oliver et al. J Physiol. 1895 Jul 18; 18(3): 230–276..

The Pharmacologic Approach to Cardiac Arrest: A Focus on Vasopressors

Jimmy L. Pruitt III, PharmD Emergency Medicine Clinical Pharmacy Specialist Grady Health System