

Stirred, Not Shaken: Utility of Viscoelastic Testing for Monitoring Coagulation in Critically Ill Populations

Megan Rech, PharmD, MS, BCCCP, FCCM
Loyola University Medical Center
Maywood, Illinois

@MeganARech

Learning Objectives

Discuss coagulation and risk factors for coagulopathy

Describe the use of viscoelastic tests in critically ill emergency department (ED) patients

Disclosures

Research funding from Spero Pharmaceutics*
Advisory board for Harm Reduction Therapeutics*

*The relevant financial relationship listed for this individual has been mitigated

Patient Case

MS is a 45-year-old male with past medical history of non-ischemic cardiomyopathy status-post left ventricular assist device placement on warfarin who presents to the ED with subdural hematoma measuring $2.6 \times 3.5 \times 3.1$ centimeters. His physical examine is within normal limits except a scalp hematoma and altered mental status. All labs were normal except INR was 3.6 and serum creatinine

was 1.52 mg/dL.

Coagulopathy in Acute Illness

Very common Predictive of poor outcomes Difficult to recognize & treat

Risk Factors for Coagulopathy

Trauma

Liver disease

Medications

Active bleeding

Hypothermia

Primary

Vasoconstriction Endothelium + platelets

Secondary

Coagulation cascade

Tertiary

Fibrinolysis

Endothelium

What Could Go Wrong?

Deranged hemostasis

- Consumptive
- Blood loss
- Decreased production

Hyperfibrinolysis

- Liver disease
- Inherited disorder
- Acquired condition

Secondary causes

- Hypothermia
- Acidosis
- Hypocalcemia

Question 1

Which of the following is a risk factor for coagulopathy?

- a) Trauma
- b) Hypothermia
- c) End stage liver disease
- d) Sepsis
- e) All of the above

Measurements of Coagulation

Traditional Coagulation Tests

- International normalized ratio (INR)
- Prothrombin time (PT)
- Partial thromboplastin time (aPTT)
- Complete blood count (CBC)
- D-dimer

Viscoelastographic Tests

- Thromboelastography (TEG®)
- Rotational thromboelastometry (ROTEM®)

Weighing the Options

Traditional Coagulation Tests

Quantitative, not functional
Provider comfort
Low cost
Rapid turnaround

Viscoelastographic

Quantitative and functional Point of care/rapid Interpretation Cost Fibrinolysis

Old Test, New Applications

Devices

How it Started...

How it's Going...

What is Viscoelastography (VE)?

What is Viscoelastography (VE)?

What is Viscoelastography (VE)?

Clin Appl Thromb Hemost. 2018; 24(8):1199-1207.

Comparing TEG and ROTEM

TEG

- 2 samples simultaneously
 - Kaolin/tissue factor
 - HTEG
- Platelet mapping, fibrin function capabilities

ROTEM

- •4 samples simultaneously
 - INTEM
 - EXTEM
 - HEPTEM
 - FIBTEM

Results NOT Interchangeable

VE Parameters

Term	TEG	ROTEM	Normal Value	Clinical Measurement
R= Reaction Time	+	-	3.8 – 9.8 minutes	Time from start to clot
ACT= activated clotting time	+*		86 – 118 seconds	initiation
CT= Clotting Time	-	+	42 – 74 seconds	

*rTEG only

Tracing the Lines

VE Parameters

Term	TEG	ROTEM	Normal Value	Clinical Measurement
R= Reaction Time	+	-	3.8 – 9.8 minutes	Time from start to clot
ACT= activated clotting time	+*		86 – 118 seconds	initiation
CT= Clotting Time	-	+	42 – 74 seconds	
K=Kinetic	+	-	0.7 – 3.4 minutes	Clotting factors + fibrinogen,
CFT= Clot Formation Time	-	+	46 – 148 seconds	platelets, factor VIII activity

^{*}rTEG only

Tracing the Lines

VE Parameters

Term	TEG	ROTEM	Normal Value	Clinical Measurement
R= Reaction Time	+	-	3.8 – 9.8 minutes	Time from start to clot
ACT= activated clotting time	+*		86 – 118 seconds	initiation
CT= Clotting Time	-	+	42 – 74 seconds	
K=Kinetics	+	-	0.7 – 3.4 minutes	Clotting factors + fibrinogen,
CFT= Clot Formation Time	-	+	46 – 148 seconds	platelets, factor VIII activity
α-angle	+	+	47.8 – 77.7 degrees	Fibrinogen activity

^{*}rTEG only

Tracing the Lines

VE Parameters

Term	TEG	ROTEM	Normal Value	Clinical Measurement
R= Reaction Time	+	-	3.8 – 9.8 minutes	Time from start to clot
ACT= activated clotting time	+*		86 – 118 seconds	initiation
CT= Clotting Time	-	+	42 – 74 seconds	
K=Kinetics	+	-	0.7 – 3.4 minutes	Clotting factors + fibrinogen,
CFT= Clot Formation Time	-	+	46 – 148 seconds	platelets, factor VIII activity
α-angle	+	+	47.8 – 77.7 degrees	Fibrinogen activity
A10= Amplitude at 10 minutes	-	+	43 – 65 mm	Clot Stability

*rTEG only

Tracing the Lines

VE Parameters

Term	TEG	ROTEM	Normal Value	Clinical Measurement
R= Reaction Time	+	-	3.8 – 9.8 minutes	Time from start to clot
ACT= activated clotting time	+*		86 – 118 seconds	initiation
CT= Clotting Time	-	+	42 – 74 seconds	
K=Kinetics	+	-	0.7 – 3.4 minutes	Clotting factors + fibrinogen,
CFT= Clot Formation Time	_	+	46 – 148 seconds	platelets, factor VIII activity
α-angle	+	+	47.8 – 77.7 degrees	Fibrinogen activity
A10= Amplitude at 10 minutes	-	+	43 – 65 mm	Clot Stability
MA= Maximum Amplitude	+	-	49.7 – 72.7 mm	Platelet count, platelet
MCF= Maximum Clot Firmness	-	+	52 – 72 mm	function, fibrinogen content

Tracing the Lines

VE Parameters

Term	TEG	ROTEM	Normal Value	Clinical Measurement
R= Reaction Time	+	-	3.8 – 9.8 minutes	Time from start to clot
ACT= activated clotting time	+*		86 – 118 seconds	initiation
CT= Clotting Time	-	+	42 – 74 seconds	
K=Kinetics	+	-	0.7 – 3.4 minutes	Clotting factors + fibrinogen,
CFT= Clot Formation Time	-	+	46 – 148 seconds	platelets, factor VIII activity
α-angle	+	+	47.8 – 77.7 degrees	Fibrinogen activity
A10= Amplitude at 10 minutes	_	+	43 – 65 mm	Clot Stability
MA= Maximum Amplitude	+	-	49.7 – 72.7 mm	Platelet count, platelet
MCF= Maximum Clot Firmness	_	+	52 – 72 mm	function, fibrinogen content
LY30= Lysis at 30 minutes	+	-	-2.3 - 5.77%	Degree of fibrinolysis
LI30= Lysis Index at 30 minutes	-	+	94 – 100%	% drop in MCF at 30 minutes

^{*}rTEG only

Tracing the Lines

VE Parameters

Term	TEG	ROTEM	Normal Value	Clinical Measurement
R= Reaction Time	+	-	3.8 – 9.8 minutes	Time from start to clot
ACT= activated clotting time	+*		86 – 118 seconds	initiation
CT= Clotting Time	-	+	42 – 74 seconds	*rTEG only
K=Kinetics	+	-	0.7 – 3.4 minutes	Clotting factors + fibrinogen,
CFT= Clot Formation Time	-	+	46 – 148 seconds	platelets, factor VIII activity
α-angle	+	+	47.8 – 77.7 degrees	Fibrinogen activity
A10= Amplitude at 10 minutes	-	+	43 – 65 mm	Clot Stability
MA= Maximum Amplitude	+	-	49.7 – 72.7 mm	Platelet count, platelet
MCF= Maximum Clot Firmness	-	+	52 – 72 mm	function, fibrinogen content
LY30= Lysis at 30 minutes	+	-	-2.3 - 5.77%	Degree of fibrinolysis
LI30= Lysis Index at 30 minutes	-	+	94 – 100%	% drop in MCF at 30 minutes
ML= Maximum Lysis	-	+	0 – 12%	Minimum amplitude noted at end of test

Tracing the Lines

Where's VE?

Where's VE?

Where's VE?

Question 2

Which of the following components of viscoelastic testing determines the time to start of clot formation?

- a. Maximal clot firmness
- b. Reaction time
- c. Alpha angle
- d. Lysis 30 minutes (LY30)

Sample Tracings

Application

↑R/CT

Fresh frozen plasma (FFP) or prothrombin complex concentrate (PCC)

↓MA/MCF

Cryoprecipitate (if FIBTEM/fibrin function[FF] \downarrow)
Platelets (if FIBTEM/FF normal)

个LY30/LI30

Tranexamic acid (TXA)

Description	Tracing	Glass	Action
Normal			Do nothing!
Anticoagulated Hemophilia			FFP or PCC
↓ Fibrinogen/ platelets			Platelets Cryoprecipitate

Description	Tracing	Glass	Action
Normal			Do nothing!
Anticoagulated Hemophilia			FFP or PCC
↓ Fibrinogen/ platelets			Platelets Cryoprecipitate
Fibrinolysis			TXA

Description	Tracing	Glass	Action
Normal			Do nothing!
Anticoagulated Hemophilia			FFP or PCC
↓ Fibrinogen/			Platelets
platelets			Cryoprecipitate
Fibrinolysis			TXA
Hypercoagulability			Monitor vs. anticoagulation

Why don't we use this everywhere?

Training & expertise Wide range of "normal", not static Logistics & standardization \$\$\$ Data lacking

Where should we use it?

Ischemic stroke

Trauma

Intracranial Hemorrhage

Liver Disease

Surgery (CV, liver transplant)

Anticoagulant Monitoring*

Goal-Directed Hemostatic Resuscitation

- Single center RCT of L1 trauma patients requiring MTP activation
- TEG (n=56) or conventional coagulation assays (CCA; n=55)
- Baseline demographics similar
 - TBI: 16% TEG vs. 21.8% CCA
- TEG group ↑ survival at 28 days
- Blood Products:
 - Similar PRBCs (4.5 units TEG vs. 5 units CCA, p=0.32)
 - $-\downarrow$ FFP (0 TEG vs. 2 CCA, p=0.02)
 - $-\downarrow$ platelets (0 TEG vs. 0 CCA, p=0.04)

Acute Ischemic Stroke

Prospective observational study of 246 mild to moderate AIS (NIHSS ≤ 14) aimed to determine if TEG on admission for predicting early neurological deterioration (END)

TEG Parameter, mean	END (n=72)	Non-END (n=174)
R	4.5±1*	4.7±1.2
K	1.3±0.4*	1.5±0.4
MA	64.3±6.1	63.5±5.7
α angle	70±4.9	68.7±5.3
LY30	95.6	95.8

After adjustment, the lower tertile of R (R ≤3.8 min) was associated with END (OR 3.556, 95% CI 1.17 -10.86)

ROC analysis demonstrated that R ≤3.45 minutes had the best predictive value for END with 87.9% sensitivity and 40.3% specificity

And Hemorrhagic Transformation?

205 patients with AIS s/p alteplase, TEG within 6 hours

TEG Variable	Hemorrhagic Transformation (N=28)	No Hemorrhagic Transformation (N=177)	P Value
R, minutes, mean (SD)	4.3 ± 0.8	4.7 ± 1.1	0.1
K, minutes, median (IRQ)	1.5 (1.2–1.8)	1.4 (1.2-1.7)	0.11
Alpha angle, degrees, median (IRQ)	68.4 (62.9–72.5)	69.6 (65.3–72.9)	0.26
MA, degrees, mean (SD)	61.1 ± 7.1	62.2 ± 8.7	0.54
LY30, %, median (IQ)	2.6 (0.1–6.5)	1.8 (0.4–5.4)	0.43

In multivariate logistic regression analysis, R<5 minutes was associated with hemorrhagic transformation (OR 3.215, 95% CI 1.153–8.969)

Intracranial Hemorrhagic

Prospective observational cohort of 64 spontaneous ICH patients vs. 57 controls

Variable, mean ± SD	Baseline ICH (n=64)	36 Hours ICH (n=27)	Controls (n=57)	Hematoma Expansion (n=11)	No Hematoma Expansion (n=38)
R	4.7±1.7*	6.5±4.4	6.1±1.8	5.7 (4.5-6.9)	4.4 (3.5-5.4)
K	2.1±1.6	2.1±2.8	2.1±0.6	3.1 (2.0-4.1)*	1.6 (0.6-2.6)
MA	64.5±14.1*	70.7±4.8*	64.4±5.8	61.7 (52.0-71.4)	61.6 (53.5-69.7)
α angle	64.4±10.8	66.4±12.3	61.3±5.8	58.0 (50.6-65.4)	62.0 (55.8-68.1)

^{*}P<0.05 relative to control

In adjusted analysis, baseline K was longer in HE+ compared with HE- patients (median K 3.1 [2 - 4.1] vs. 1.6 [0.6 - 2.6], P=0.04)

Stroke. 2014; 45(3): 683-688.

Last but not least...

MS is a 45-year-old male with past medical history of non-ischemic cardiomyopathy status-post left ventricular assist device placement on warfarin who presents to the ED with subdural hematoma measuring $2.6 \times 3.5 \times 3.1$ centimeters. His physical examine is within normal limits except a scalp hematoma and altered mental status. All labs were normal except INR was 3.6 and serum creatinine was 1.52 mg/dL.

30 minutes s/p 4F-PCC 2000 flXa units IVPB and vitamin K 5 mg IVPB ROTEM:

ROTEM Parameter	Extrinsic ROTEM
Clot time (CT), seconds (reference range)	77 (43-82)
Clot formation time (CFT), seconds (reference range)	196 (48-127)
α-angle, degrees (reference range)	77 (65-80)
Amplitude at 10 minutes (A10), millimeters (reference	69 (46-67)
range)	
Maximum Clot Firmness (MCF), millimeters (reference	74 (52-70)
range)	
Lysis Index at 30 minutes (LI30), % (reference range)	100 (94-100)

Question 3

Based on this ROTEM, what should we give?

- a) Order additional 500 flXa units of 4F-PCC
- b) No additional factors needed
- c) Order platelets
- d) Order fresh frozen plasma

Conclusions

- Coagulopathy is common in critically ill patients
- VE testing is useful to guide management of coagulopathy in many patient populations
- VE has been studied across a wide range emergencies, though further research is needed to determine its role beyond a prognostic tool in most settings outside of trauma

Stirred, Not Shaken: Utility of Viscoelastic Testing for Monitoring Coagulation in Critically Ill Populations

Megan Rech, PharmD, MS, BCCCP, FCCM
Loyola University Medical Center
Maywood, Illinois

@MeganARech

