

A conference that is for us and by us

'If You Ain't First, You're Last':

Adenosine Vs. Calcium Channel Blockers for Supraventricular Tachycardia (SVT)

Nick Servati, PharmD, BCCP

Disclosure

I have no actual or potential conflicts of interest in relation this presentation

Objectives

Recognize why adenosine may no longer be the only first-line pharmacologic therapy

Appraise the current available evidence for calcium channel blockers (CCB) in pSVT

Discuss scenarios when not to use either agent

SVT: Umbrella Term

- Quite literally translates to "above the ventricles"
 - Refers to any arrhythmia with its origin above the bundle of His
- For the rest of the presentation SVT or paroxysmal SVT (pSVT) will be intended as AVNRT

SVT: Epidemiology

3 per 1,000 adults

36 per 100,000 people annually

2:1 Female to male

SVT: Pathophysiology

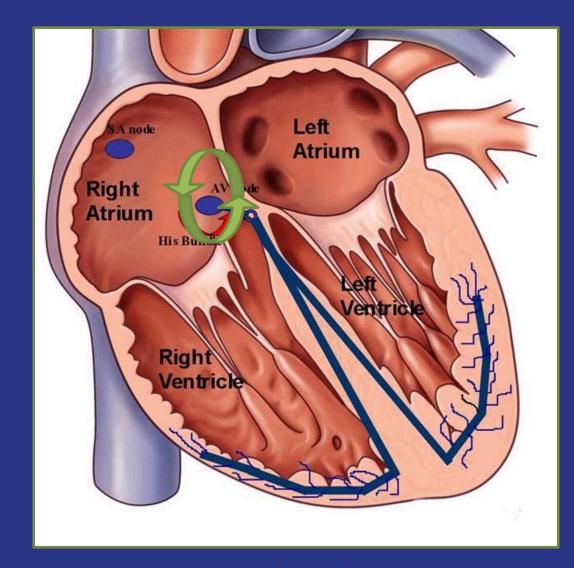
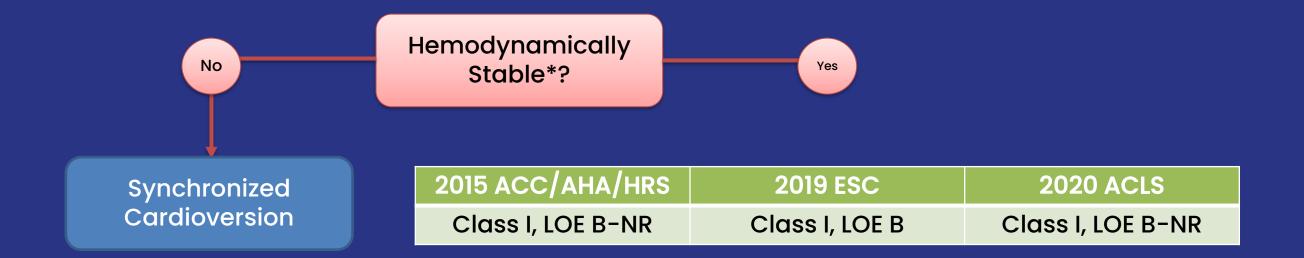


Image courtesy of washingtonhra.com

 Spontaneous or triggered (e.g. physical or emotional stress, caffeine, hypothyroidism, etc.)

Fast and slow pathways within the AV nodal tissue

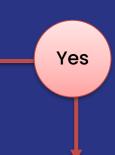

Normal ventricular conduction

Narrow complex tachycardia

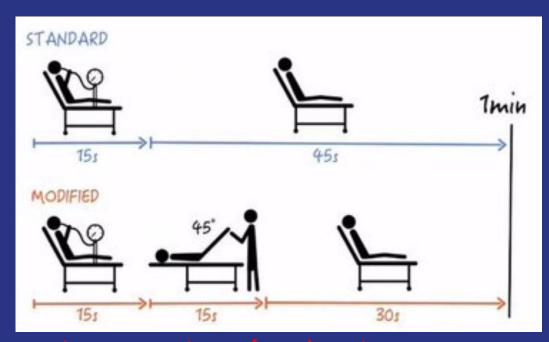
GOAL: Block or slow conduction through the AV node

Guideline Recs - Unstable




*How is that defined?

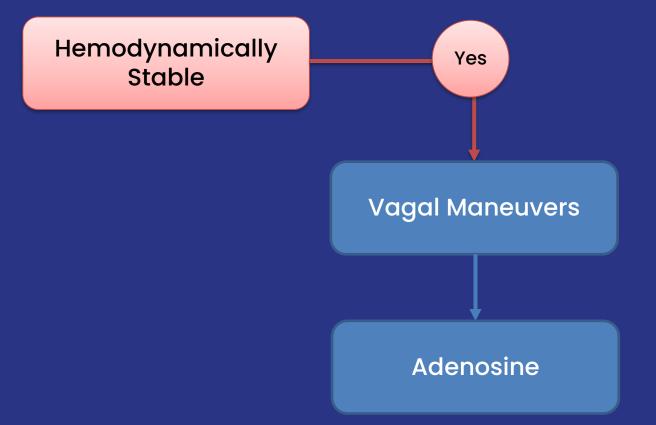
- Ischemic chest pain
- Altered mental status
- Shock
- Hypotension
- Acute heart failure


Guideline Recs - Stable

Vagal Maneuvers

2015 ACC/AHA/HRS	2019 ESC	2020 ACLS
Class I, LOE B-R	Class I, LOE B	Class I, LOE B-R

2015 - REVERT Trial


Modified Valsalva technique vs. standard Return to NSR in 1 min: 43% vs 17% (NNT 3)

Adenosine use ↓ 28% 0 *serious* adverse events Simple, safe and free

Image courtesy of medmastery.com

Guideline Recs - Stable

2015 ACC/AHA/HRS	2019 ESC	2020 ACLS
Class I, LOE B-R	Class I, LOE B	Class I, LOE B-R

Adenosine

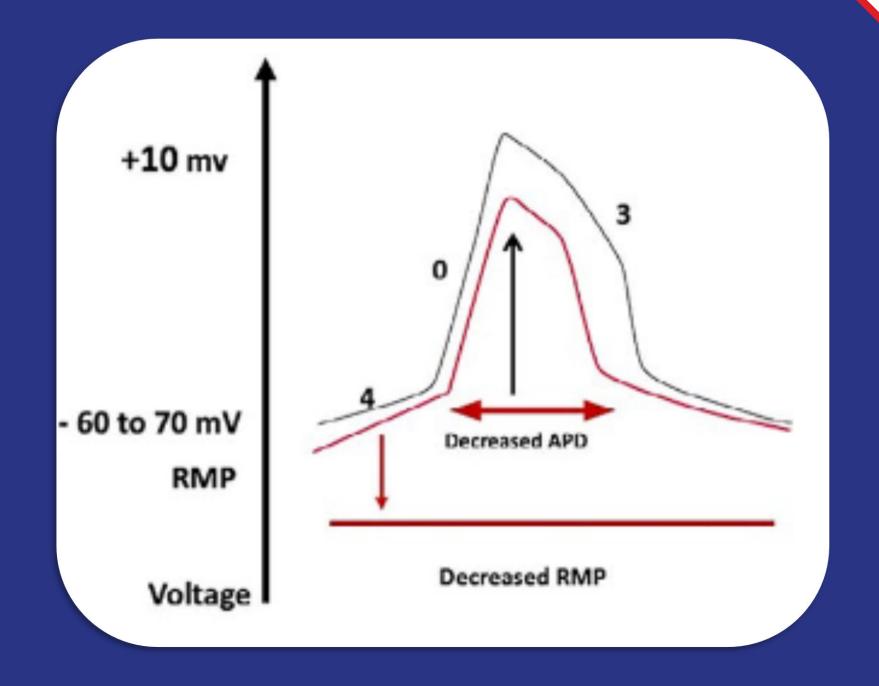
Pharmacology

Onset 20-30 seconds

Metabolism Phosphorylation

Deamination within RBCs

Half-life <10 seconds

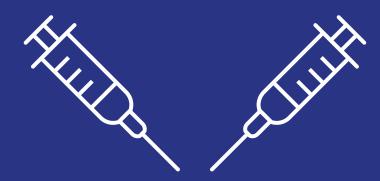

Common Dosing Scheme

Initial dose: 6 mg \rightarrow 12 mg x 2

Special Heart transplant recipients

Considerations Central venous access

to ↓ 3 mg: Dipyridamole



Adenosine Pitfalls

↓ efficacy with recent caffeine ingestion

Difficult administration

Single syringe technique

Caution in reactive airway disease

[Not so] Minor Side Effects

- Dyspnea
- Chest tightness
- Headache
- Facial flushing
- Nausea

Related to vasodilatory properties

Case:

CC is a 33-year-old male who presents to the ED with complaints of palpitations and shortness of breath since yesterday morning.

CC reports having "SVT" in the past.

12-lead ECG today shows a regular, narrow complex tachycardia with a rate of 216 BPM.

The EM intern is asking for pharmacy assistance with adenosine administration for CC, after vagal maneuvers were attempted and failed.

She is reviewing the case with you, what are some things to review before administering:

- A. How were vagal maneuvers performed?
- B. PMH for severe reactive airway disease
- C. Prior therapies for AVNRT and patient comfort
- D. Assess vital signs for hemodynamic stability
- E. All of the above


The EM intern is asking for pharmacy assistance with adenosine administration for CC, after vagal maneuvers were attempted and failed.

She is reviewing the case with you, what are some things to review before administering:

- A. How were vagal maneuvers performed?
- B. PMH for severe reactive airway disease
- C. Prior therapies for AVNRT and patient comfort
- D. Assess vital signs for hemodynamic stability
- E. All of the above

Guideline Recs - Stable

2015 ACC/AHA/HRS	2019 ESC	2020 ACLS
Class IIa, LOE B-R	Class IIa , LOE B	Class IIa, LOE B-R

Calcium Channel Blockade

Non-dihydropyridine

• ↑ cardioselectivity vs DHP CCB

	Verapamil	Diltiazem
Onset	<5 minutes	<5 minutes
Duration	≤ 6 hours	1-3 hours
Doses	2.5-5 mg over 2 min > 5-10 mg q15-30 min [Max: 30 mg] -or- 1 mg/min infusion until NSR or 20 mg	0.25 mg/kg over 2 min ➤ 0.35 mg/kg in 15 min -or- 2.5 mg/min infusion until NSR or 50 mg

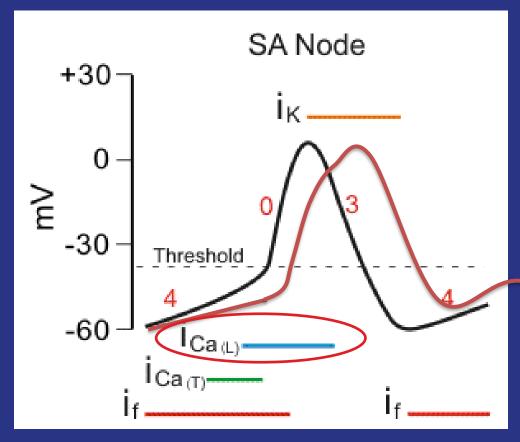
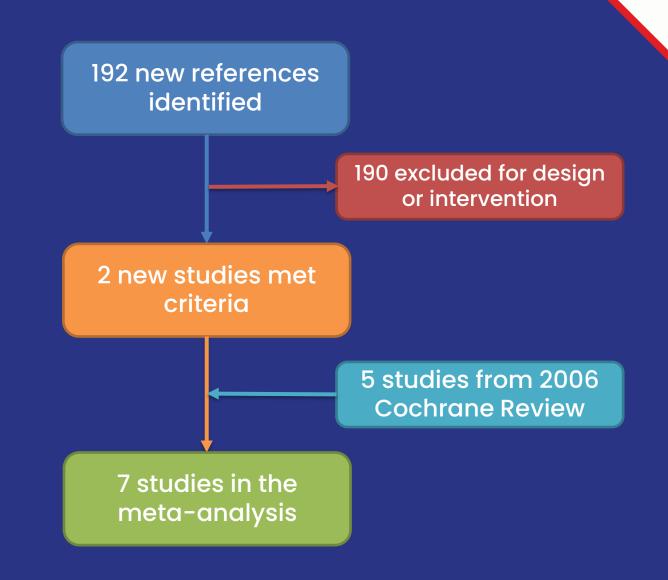


Image courtesy of cypharmacology.con



12 Powerx conference

A conference that is for us and by us

Head To Head

Criteria for studies utilized in the review	
Patients included	Any age Within 24 hours of onset Diagnosis via 12-lead ECG
Patients excluded	SVT induced in the electrophysiology lab
Methodology	RCTs only (-) Publications that were reviews, retrospective, of observational design or not randomized were excluded
Interventions included	Any direct comparison of IV CCBs versus IV adenosine Any dose or infusion rate of either

Primary Outcomes

- 1. Reversion to sinus rhythm
- 2. Major adverse events

Secondary Outcomes

- 1. Time to NSR
- 2. Rate of relapse within 2 hr
- 3. Length of stay
- 4. Minor adverse events
- 5. Patient satisfaction

All 7 studies reported

N = 622

89.7% with adenosine vs. 92.9% with CCBs

OR 1.51 (95% CI [0.85-2.68])

No difference in efficacy

Primary Outcomes

- 1. Reversion to sinus rhythm
- 2. Major adverse events

Secondary Outcomes

- 1. Time to NSR
- 2. Rate of relapse within 2 hr
- 3. Length of stay
- 4. Minor adverse events
- 5. Patient satisfaction

Only 3 studies reported N = 306

Hypotension within 2 hours post-infusion 0 events with adenosine vs. 1 with CCBs OR 3.09 (95% CI [0.12-76.71])

Low-quality of evidence

Note: 2 of 3 trials reporting, specifically excluded patients with SBP < 90 mmHg at enrollment

Primary Outcomes

- 1. Reversion to sinus rhythm
- 2. Major adverse events

Secondary Outcomes

- 1. Time to NSR
- 2. Rate of relapse within 2 hr
- 3. Length of stay
- 4. Minor adverse events
- 5. Patient satisfaction

4 studies reported N = 358 3.3% with adenosine vs. 1.14% with CCBs OR 0.38 (95% CI [0.09-1.69])

Primary Outcomes

- 1. Reversion to sinus rhythm
- 2. Major adverse events

Secondary Outcomes

- 1. Time to NSR
- 2. Rate of relapse within 2 hr
- 3. Length of stay
- 4. Minor adverse events
- 5. Patient satisfaction

Heterogenous data overall

3 studies reported on chest tightness

- N = 222
- 11.7% vs. 0%; OR 0.09 (95% CI [0.02, 0.50])

2 studies reported on shortness of breath

- N = 171
- 6.9% vs 1.2%; OR 0.23 (95% CI [0.04-1.37])

1 study reported on flushing

- N = 50
- 61.5% vs 0%; OR 0.01 (95% CI [0.00-0.24])

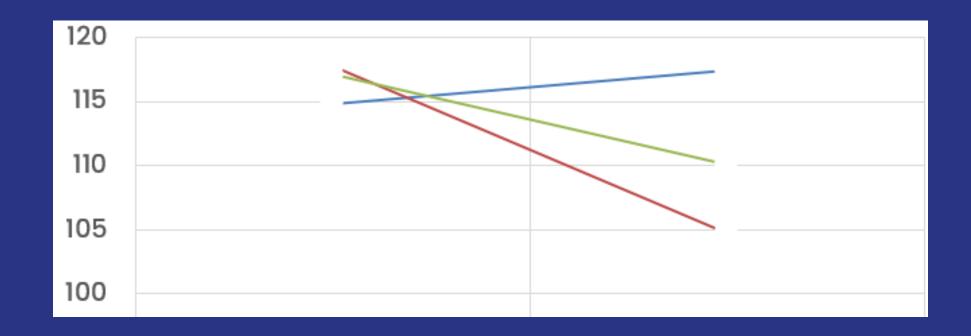
CCBs: Slow infusion

206 patients with spontaneous SVT were prospectively randomized to:

Adenosine (n=102)

 6 mg followed by 10 mL saline IVP → 12 mg repeat within 2 min

CCBs via slow infusion


- Verapamil (n=48)
 - 1 mg/min up to 20 mg
- Diltiazem (n=54)
 - 2.5 mg/min up to 50 mg

If SVT not converted by end of infusions, patients were crossed-over to opposite group*

Results	
Success rate	98% with either CCB vs. 86.5% with adenosine RR 1.13 (95% CI 1.04-1.23); p=0.002
Dose to convert ≥75% patients	7.7 mg verapamil or 18.1 mg diltiazem
Time to conversion:	6.5-6.76 min with CCB vs 1.48 min Adenosine

CCBs: Slow infusion

	Baseline SBP (mmHg)	SBP post-conversion (mmhg)
Adenosine	114.8	117.4
Verapamil	117.7	104.7
Diltiazem	117.1	110.1

- Hypotension (SBP ≤90 mmHg)
 1 pt in the CCB (0.98%) vs 0 pts in adenosine group (95% CI 0.025-5.3)

Slow infusion may mitigate risk of developing hypotension

2021 Diltiazem Bolus

Disclaimer	Poster presentation from 2021 AHA annual conference
Methods	Prospective, randomized Hemodynamically stable SVT, who failed vagal maneuvers
Intervention	Diltiazem IV bolus 0.25 mg/kg → 0.35 mg/kg if no conversion
Control	Adenosine 6 mg → 12 mg if no conversion
All Groups	Followed by a continuous infusion of diltiazem if no conversion
Results	N = 52 Conversion to NSR: 26/26 (100%) vs 20/26 (76.9%) [p=0.023] Mean \triangle in BP was not-significantly different No significant \triangle in adverse events

When to Avoid

CCBs

- Heart failure
- SBP ≤90 mmHg
- Signs of Shock
- Not defined AVNRT
- Already taking other AV nodal blocking agents

>1° AV block SA node dysfunction WPW

Adenosine

- Reactive airway disease
 - Recent caffeine use
 - Prior history of ADEs

Intra-nasal, in-to-our Future?

Etripamil

- Novel non-DHP CCB administered as a nasal spray
- Absorption within 10 minutes

Phase II Trial – NODE-1	
Methods	 Induced SVT in patients undergoing catheter ablation Placebo-controlled
Results	 Conversion rates: 65-95% (dose-dependent) Time to conversion <3 minutes Drop in BP only seen with highest dose Side effects: local nasal irritation

Case Continued

You and the team ask why the patient waited so long to come in, especially if they've had SVT before, and CC says, "I just afraid to come in, the meds messed me up real good last time!"

Most recent vital signs still with a HR of 216 BPM, and BP 126/79 mm Hg.

Reviewing PMH with CC and the intern, you discover he has asthma and with his trouble breathing CC has been continuously using his albuterol inhaler, but no wheezing noted on exam by the intern.

What pharmacologic or non-pharmacologic therapy would you recommend with this new information?

- A. Synchronized cardioversion
- B. Adenosine 6 mg rapid IVP, followed by 20 mL saline flush
- C. Adenosine 6 mg and saline in a single syringe, given as rapid IVP
- D. Diltiazem 0.25 mg/kg IVP over 2 minutes or as slow infusion at 2.5 mg/min up to 50 mg

What pharmacologic or non-pharmacologic therapy would you recommend with this new information?

- A. Synchronized cardioversion
- B. Adenosine 6 mg rapid IVP, followed by 20 mL saline flush
- C. Adenosine 6 mg and saline in a single syringe, given as rapid IVP
- D. Diltiazem 0.25 mg/kg IVP over 2 minutes or as slow infusion at 2.5 mg/min up to 50 mg

Select all that apply. What are reasons to <u>avoid</u> CCBs for the treatment of pSVT.

- A. Presenting on/already receiving beta-blockers or non-DHP CCBs
- B. Patients with robust blood pressure and hemodynamically stable
- C. Heart failure with reduced ejection fraction (≤40%)
- D. Poor, prior patient experiences with adenosine

Select all that apply. What are reasons to <u>avoid</u> CCBs for the treatment of pSVT.

- A. Presenting on/already receiving beta-blockers or non-DHP CCBs
- B. Patients with robust blood pressure and hemodynamically stable
- C. Heart failure with reduced ejection fraction (≤40%)
- D. Poor, prior patient experiences with adenosine

Take-Home Points

- ☐ Guideline recommendations still maintain Adenosine as 1st line
- ☐ Non-DHP CCBs, vs. adenosine, are:
 - ☐ Equally efficacious
 - ☐ Unlikely to cause hypotension
 - ☐ Associated with fewer 'minor' adverse events
- ☐ The devil is in the details
 - ☐ Patient selection & preference is key for CCBs
 - CAUTION with signs of shock, hypotension or heart failure

A conference that is for us and by us

'If You Ain't First, You're Last':

Adenosine Vs. Calcium Channel Blockers for Supraventricular Tachycardia (SVT)

Nick Servati, PharmD, BCCP

