PHARMACY & ACUTE CARE UNIVERSITY

Learning Objectives

Upon completion of this program, participants will be able to:

- Define the most used sedation assessment scales in intensive care units (ICU) and explain their importance
- Summarize key pharmacokinetic/pharmacodynamic characteristics of sedative agents in the ICU
- Compare and contrast clinical use of various sedation agents in the ICU based on recent literature
- Design initiation and weaning-off sedation strategies for patients in the ICU

Disclosures

- o I have no real or apparent conflicts of interest to disclose
- o I will not be discussing off-label or investigational uses of medications

Post-Intubation Sedation

Mohammed Aldhaeefi, PharmD, BCCCP

Post-Intubation

Medical Management

Physical Management

Post-Intubation Period and Physical Management

Securing the endotracheal tube

Line suctioning

Elevating the head of the bed

Post-Intubation Period and Medical Management

- Pain management (analgesia-first)
- When pain is fully controlled, post-intubation sedation may be indicated:
 - Agitation
 - Relieve discomfort
 - Improve synchrony with mechanical ventilation
 - Decrease oxygen requirements
 - Decrease overall work of breathing
 - When paralytic use is indicated

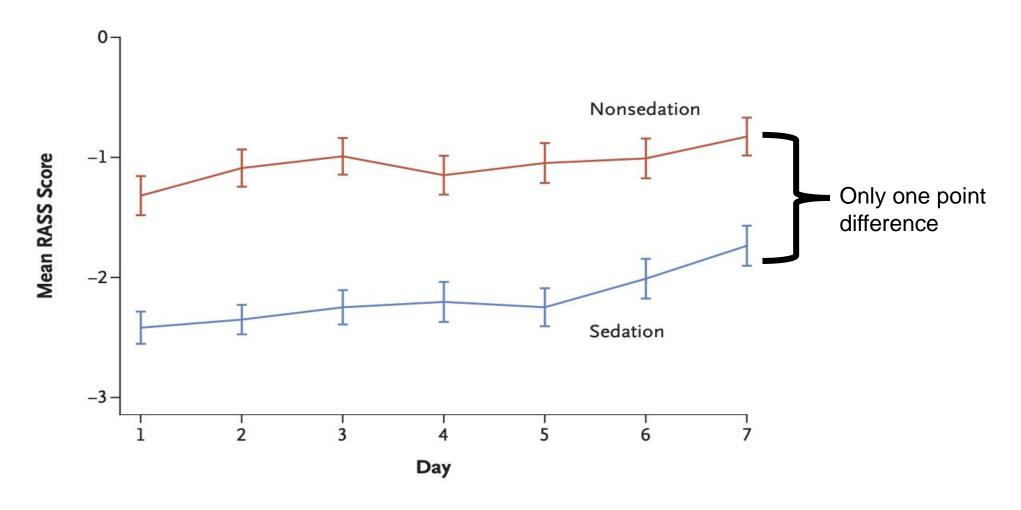
Pain Matters

- Mechanical ventilation for at least 24-hours
- No sedation vs. propofol/midazolam
- Bolus doses of morphine (2.5-5 mg) PRN

Outcome	No sedation	Sedation	p-value
Days without mechanical ventilation	13.8	9.6	0.0191
Length of stay	13.1	22.8	0.0316
Mortality	12	22	0.06

Mechanical ventilation for at least 24-hours

• No sedation vs. light sedation (-2 to -3)


Morphine for pain management

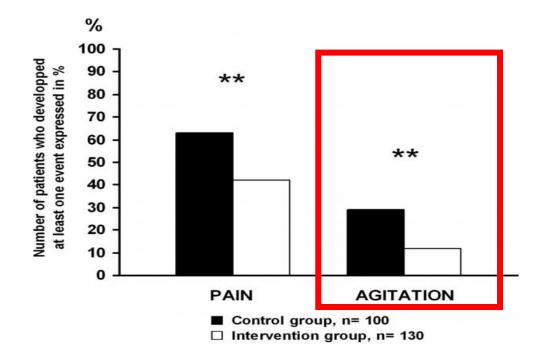
 Propofol was used for sedation in the first 48 hours and was replaced by midazolam thereafter

Significant Outcomes	Non-Significant Outcomes
Fewer patients without sedation had thromboembolic events	 Mortality ICU length of stay Ventilator-free days Delirium/coma-free days

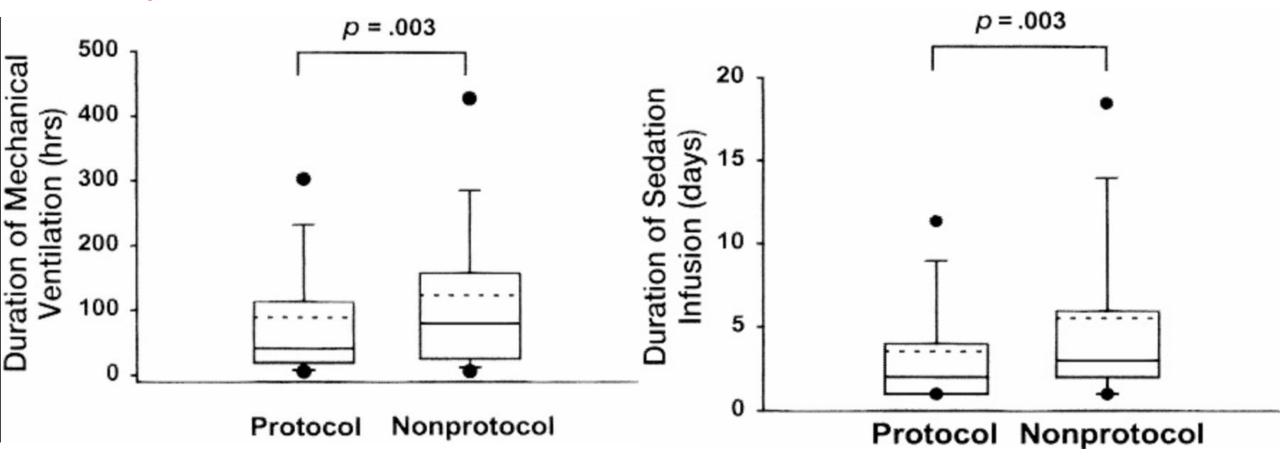
- Average use of opioids was around 8 mg of morphine/day
 - Maybe more of opioids use reduction strategy?
- No 1:1 nursing assessment

Not blinded

No PTSD assessment


Post-Intubation Period and Medical Management

- Pain management (analgesic-first)
- When pain is fully controlled, post-intubation sedation may be indicated if:
 - Agitation
 - Relieve discomfort
 - Improve synchrony with mechanical ventilation
 - Decrease oxygen requirements
 - Decrease overall work of breathing
 - When paralytic use is indicated


Why Do We Use Sedation in The ICU?

 Using RASS based assessment and sedation use resulted in reduction in duration of mechanical ventilation

Why Do We Use Sedation in The ICU?

How to Assess Sedation in the ICU?

Richmond Agitation-Sedation Scale (RASS)

Score	Term	Description			
+4	Combative	Overtly combative or violent; immediate danger to staff			
+3	Very agitation	Pulls on or removes tube(s) or catheter(s) or has aggressive behavior toward staff			
+2	Agitated	Frequent nonpurposeful movement or patient-ventilator dyssynchrony			
+1	Restless	Anxious or apprehensive but movements not aggressive or vigorous			
0	Alert and calm				
-1	Drowsy	Not fully alert, but has sustained (more than 10 seconds) awakening, with eye contact, to voice			
-2	Light sedation	Briefly (less than 10 seconds) awakens with eye contact to voice			
-3	Moderate sedation	Any movement (but no eye contact) to voice			
-4	Deep sedation	No response to voice, but any movement to physical stimulation			
-5	Unarousable	No response to voice or physical stimulation			

Riker Sedation-Agitation Scale (SAS)

• 7	Dangerous agitation	Pulling at endotracheal tube, trying to remove catheters, climbing over bed rail, striking at staff, thrashing side to side
• 6	Very agitated	Does not calm, despite frequent verbal reminding of limits; requires physical restraints, biting endotracheal tube
• 5	Agitated	Anxious or mildly agitated, attempting to sit up, calms down to verbal instructions
• 4	Calm and cooperative	Calm, awakens easily, follows commands
• 3	Sedated	Difficult to arouse; awakens to verbal stimuli or gentle shaking, but drifts off again; follows simple commands
• 2	Very sedated	Arouses to physical stimuli, but does not communicate or follow commands, may move spontaneously
• 1	Unable to rouse	Minimal or no response to noxious stimuli, does not communicate or follow commands

RASS vs. SAS

- Excellent reliability with both
- CAM-ICU based on RASS
- Presence and sustainability cognition or comprehension only with RASS
- Mechanical ventilation synchrony only with RASS
- RASS provide distinction despite the single scale design (- vs +)

Bispectral Index (BIS)

- Measures the electrical activity in the brain
- Range:
 - 0 = COMPLETE absence of brain activity
 - 100 = FULLY awake
- Values between 40 60 represent adequate general anesthesia and showed "very low levels of post-operation recall"
- Values less than 40 represent a deep hypnotic state
- <20 = burst suppression</p>

BIS in The ICU

- PADIS guidelines: "BIS monitoring...during deep sedation or neuromuscular blockade"
- Low BIS associated with increasing delirium
 - Morbidity and mortality?
- Possible faster wakening times
- Currently no high-level evidence to guide use in ICU

Sedation Agents and Strategies

Commonly Used Sedative Agents

Propofol

Dexmedetomidine

Ketamine

Benzodiazepines

Sedative Agents

	MoA	Onset	Duration	Precautions	AE	PK	Dose
Propofol	GABA _A Na channel Reduction of glutamate release	1 minute	Single bolus dose: 5-6 minutes Short term use: 0.5-1 hours Long term use: 25-50 hours	Hypotensio n, bradycardia, hepatic/ renal failure, pancreatitis	Respiratory depression, hypotensio n, bradycardia , PRIS	Hepatic conjugation, 2B6 CYP substrate	5–50 mcg/kg/min
Dexmedetomidine	Alpha adrenergic agonist	20-30 minutes	1-2 hours	Hepatic failure, bradycardia	Hypotensio n, bradycardia	Hepatic by glucuronidati on and renal excretion, 2A6 CYP substrate	0.2–0.75 mcg/kg/hr

MoA: Mechanism of action

AE: Adverse effects PK: Pharmacokinetics

Devlin J, et al. Crit Care Med. 2018 Reade MC. N Engl J Med. 2014;370(5):444-454 Hughes CG. Clin Pharmacol. 2012;4:53-63

Sedative Agents

	MoA	Onset	Duration	Precautions	AE	PK	Dose
Benzodiazepines	GABA _A	3-10 minutes	2-8 hours	Delirium Midazolam: Hepatic failure Lorazepam: Renal failure	Metabolic acidosis, propylene glycol toxicity (lorazepam)	Lorazepam: hepatic conjugation Midazolam: phase I hepatic to alpha hydroxymidazolam , 3A4	Lorazepam bolus dose: 1–4 mg IV every 4–6 hours Midazolam: 1-5 mg/hour
Ketamine	NMDAR antagonist	0.5-1 minute	15 minutes	Dissociative anesthesia (2Cs + 2As)	Breathing difficulties, laryngospasm, increases salivary secretions	Hepatic N- demethylation by 3A4 to norketamine	1-2 mcg/kg/hour

AE: Adverse effects

PK: Pharmacokinetics; MoA: Mechanism of action

2018 PADIS Recommendations

 "We suggest using light sedation (vs deep sedation) in critically ill, mechanically ventilated adults"

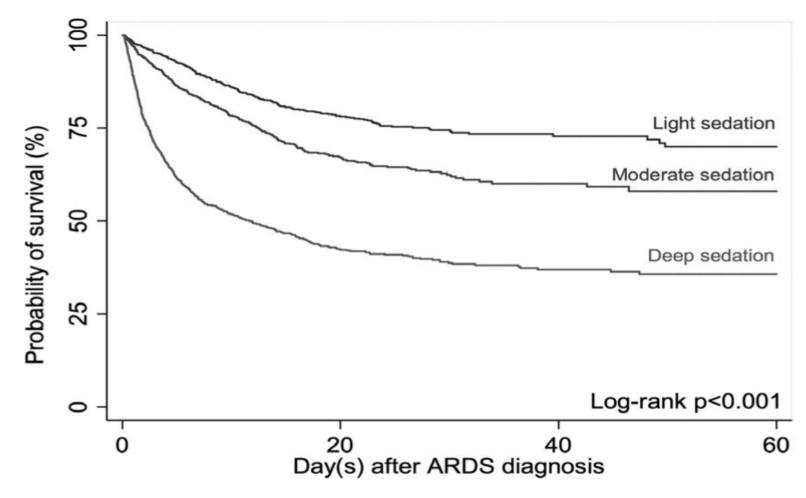
 "We suggest using propofol or dexmedetomidine over benzodiazepines (midazolam or lorazepam) for sedation in critically ill mechanically ventilated patients"

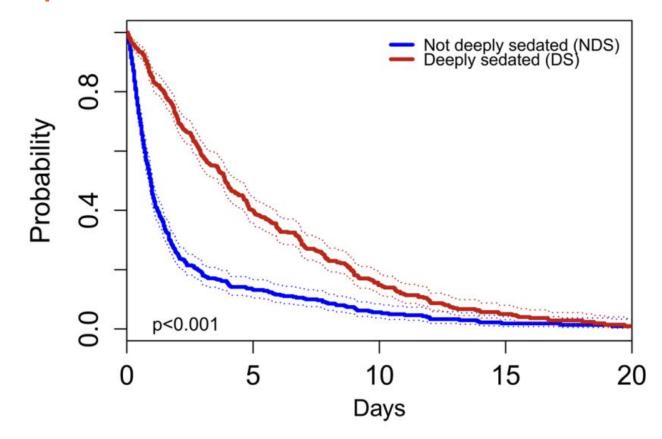
 "We suggest using propofol over benzodiazepines (midazolam or lorazepam) for sedation in mechanically ventilated patients after cardiac surgery"

2018 PADIS Recommendations

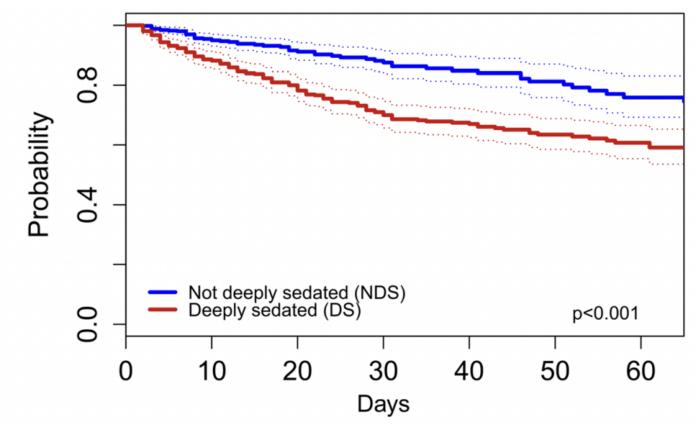
 "We suggest using light sedation (vs deep sedation) in critically ill, mechanically ventilated adults"

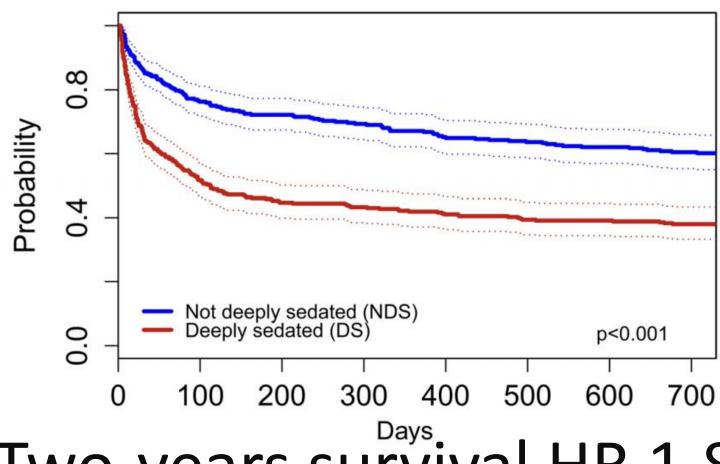
 "We suggest using propofol or dexmedetomidine over benzodiazepines (midazolam or lorazepam) for sedation in critically ill mechanically ventilated patients"


 "We suggest using propofol over benzodiazepines (midazolam or lorazepam) for sedation in mechanically ventilated patients after cardiac surgery"

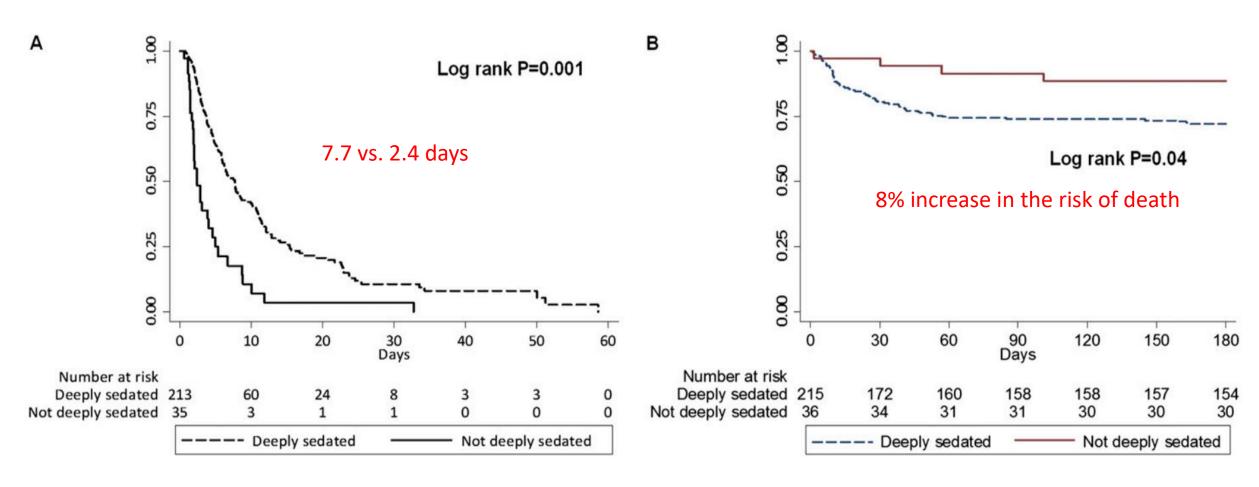

Light vs. Deep Sedation/MENDS2 and Sepsis Patients

- Dexmedetomidine (0.2-1.5 mcg/kg/hr) vs propofol (5-50 mcg/kg/min)
- No difference between dexmedetomidine and propofol in the number of days alive without delirium or coma (OR 0.96; 95% CI, 0.74 to 1.26)
- Ventilator-free days (OR 0.98; 95% CI, 0.63 to 1.51)
- Death at 90 days (38% vs. 39%; hazard ratio, 1.06; 95% CI, 0.74 to 1.52)




Time to extubation 21 vs 76 hours

In hospital survival HR 1.661



Two-years survival HR 1.866

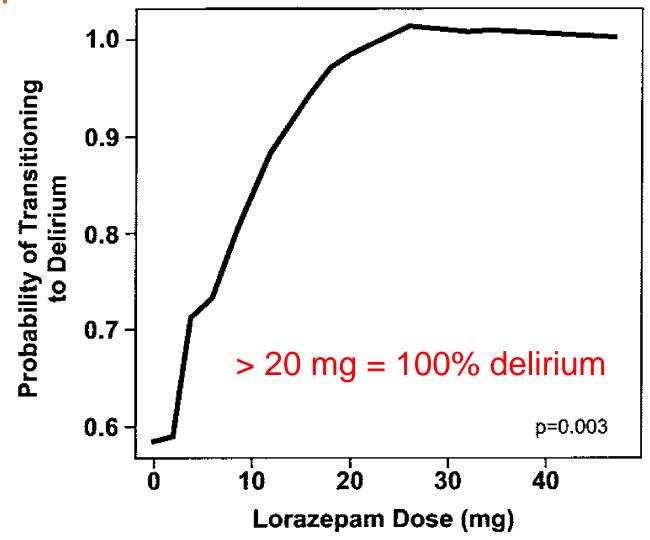
Light vs Deep Sedation in The MICU/SICU

Take-Home Message #1

Light sedation when appropriate

- Deep sedation if:
 - Neuromuscular blockade
 - Intracranial hypertension
 - Severe respiratory failure
 - Refractory status epilepticus

2018 PADIS Recommendations


 "We suggest using light sedation (vs deep sedation) in critically ill, mechanically ventilated adults"

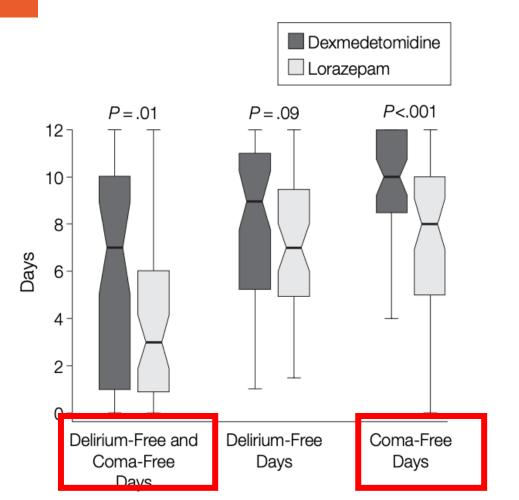
 "We suggest using propofol or dexmedetomidine over benzodiazepines (midazolam or lorazepam) for sedation in critically ill mechanically ventilated patients"

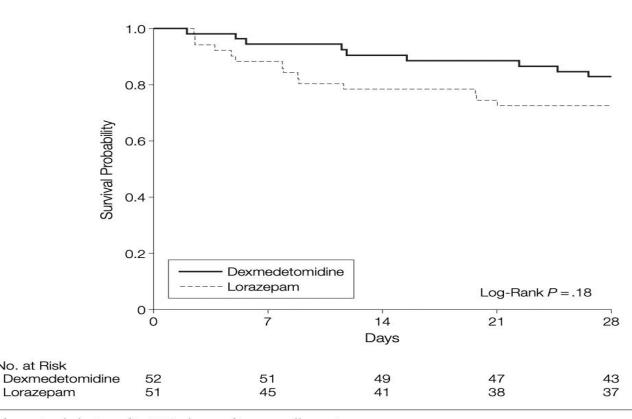
 "We suggest using propofol over benzodiazepines (midazolam or lorazepam) for sedation in mechanically ventilated patients after cardiac surgery"

Benzodiazepines and Delirium

MENDS Study

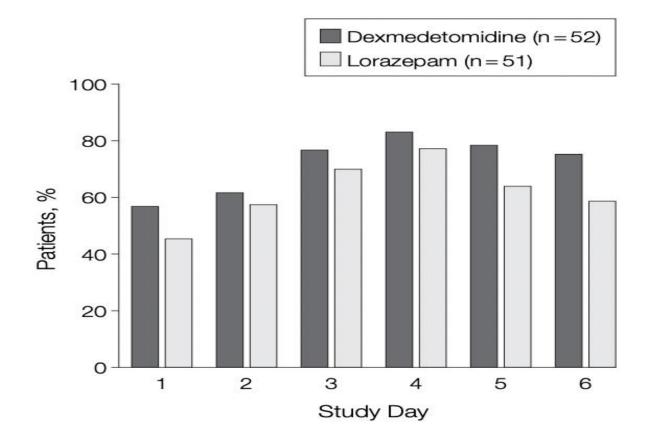
• Prospective, randomized, double blind


MICU/SICU patients on ventilator >24 hours


• 106 patients

• Dexmedetomidine (DEX) infusion vs lorazepam infusion

DEX had less delirium-free and coma-free days compared to lorazepam. However, both had similar survival rate

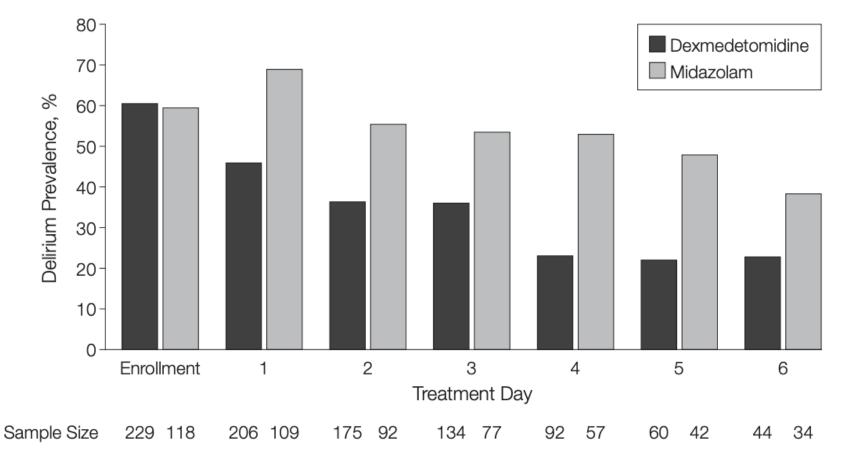

Probability of survival during first 28 days after enrollment.

No. at Risk

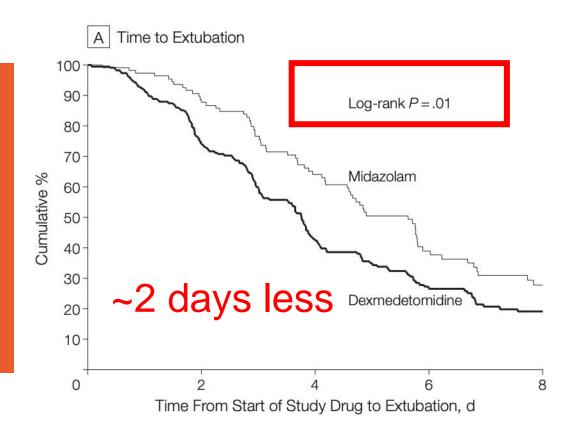
Lorazepam

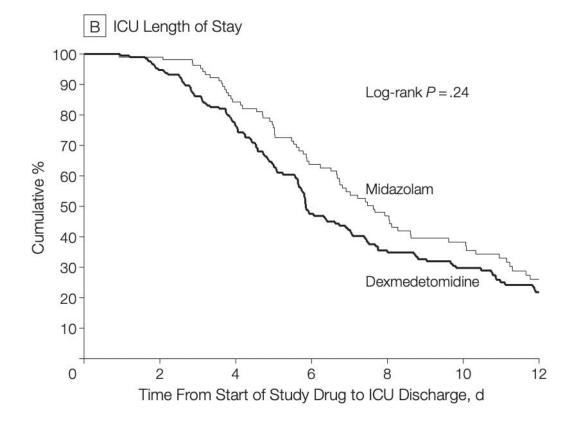
Dexmedetomidine-treated patients had a 4% to 17% greater likelihood of being at the target sedation score than lorazepam-treated patients

SEDCOM Study


• Prospective, randomized, double blind

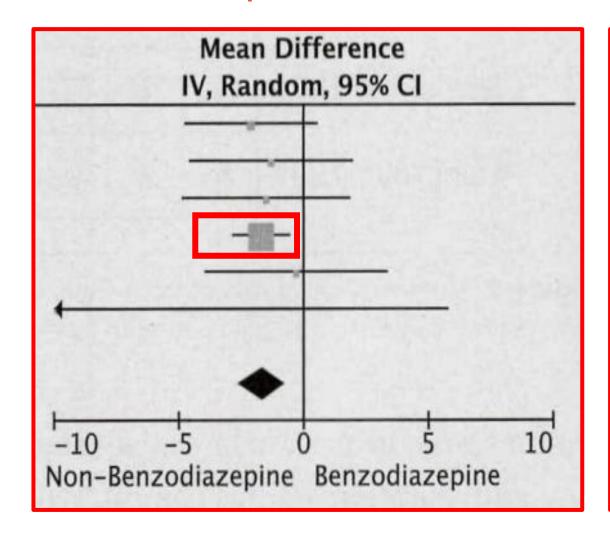
 Included 297 adult patients expected to be on mechanical ventilation for ≥72 hours

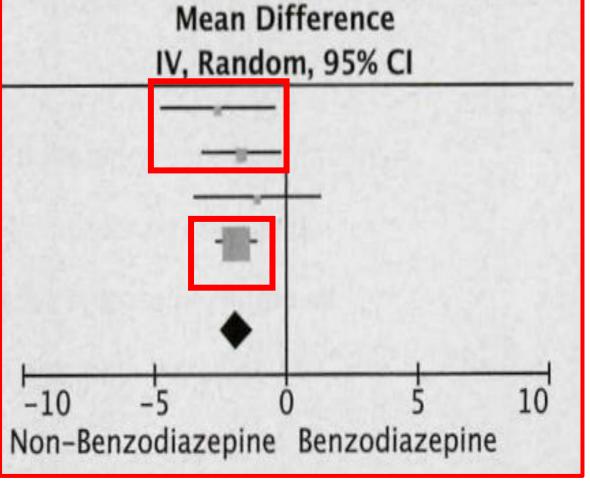

Dexmedetomidine vs midazolam



Prevalence of delirium among patients treated with dexmedetomidine vs midazolam

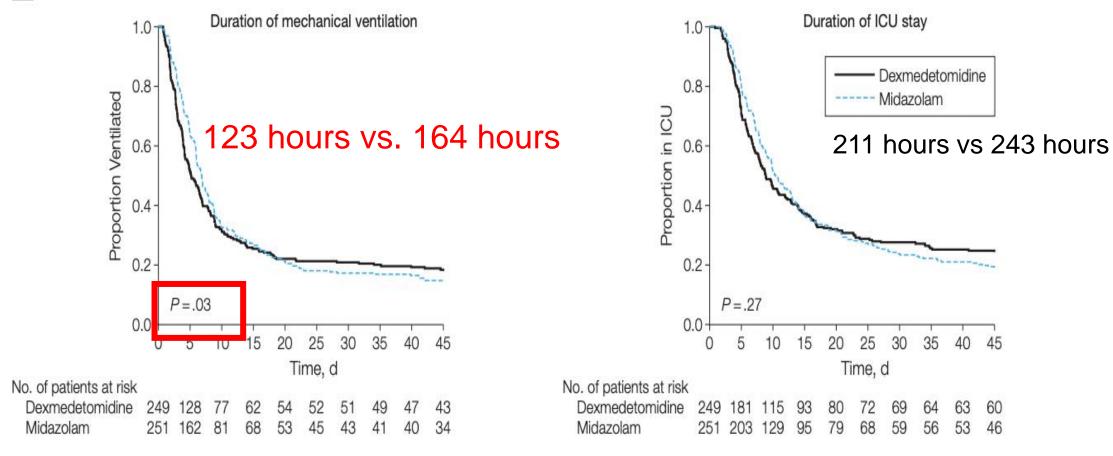
Benzodiazepine vs. Nonbenzodiazepine


Meta-Analysis of 6 randomized clinical trials

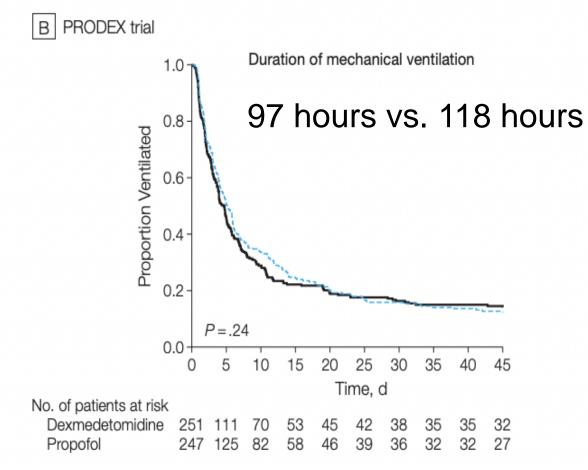

 Medical and surgical ICU patients on mechanical ventilation receiving intravenous sedation

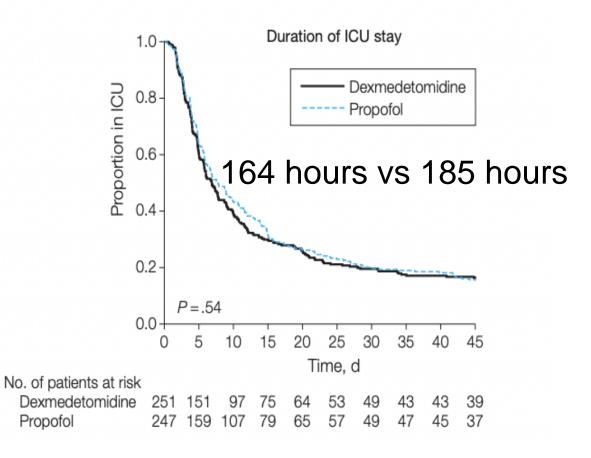
Benzodiazepine vs a nonbenzodiazepine

Benzodiazepine vs. Nonbenzodiazepine


MIDEX/PRODEX

 Adult ICU patients needing midazolam or propofol infusion for at least 24 hours


- Midazolam infusion for 249 patients (MIDEX)
- Propofol infusion for 251 patients (PRODEX)
 vs.
- Dexmedetomidine



Take-Home Message #2

- Evidence showed less delirium, shorter duration of mechanical ventilation and ICU LOS with dexmedetomidine or propofol over benzodiazepines
- Similarities were found between propofol and dexmedetomidine (sedation goal?)
- Benzodiazepines if:
 - Status epilepticus
 - Alcohol withdrawal
 - Benzodiazepine dependence or withdrawal
 - Deep sedation or amnesia and with the use of neuromuscular blockade

The Ideal Agitation/Sedation Management

- 1. Treat pain
- 2. Treat pain
- 3. Treat pain

Analgosedation (analgesia-first)

- 4. Use validated scale for sedation-agitation (2-4 hours)
- 5. One size dose not fit all; patient specific approach
 - Over-sedation
 - Well-sedated
 - Under-sedation

How to Put this Into Clinical Practice

- Treat pain, treat pain, then treat pain
- Remove reasons for irritation and agitation
- Determine your KEYSTONE sedative agent:
 - Level and duration of sedation
 - Other disease states, such as, seizure? Pancreatitis? Allergy? Elevated intracranial pressure? Severs ARDS?
- Clinical factors:
 - Blood pressure, heart rate, ventilation status (approaching extubation?)
- Organ dysfunctions:
 - Renal and hepatic
- Withdrawal:
 - Alcohol, home benzodiazepines

How to Wean-Off Sedation?

Spontaneous Awakening Trial (SAT)

- 1. Assess if patient is appropriate for SAT, then
- 2. Sedatives and analgesics should be stopped
- 3. Analgesics could be continued, as necessary if needed
- 4. Patient passes SAT if able to follow three out of four simple tasks:
 - Open their eyes
 - Look at their caregiver
 - Squeeze the hand,
 - Put out their tongue, or
 - Can go without sedation for 4 hours or more without the following:
 - Constant anxiety, agitation, or pain
 - Respiratory rate of 35 breaths/minute for at least 5 minutes
 - Oxygen saturation (SpO2) of < 88% for at least 5 minutes
 - Acute cardiac dysrhythmia or respiratory distress

Spontaneous Awakening Trial (SAT)

- SAT could be deferred if any presents:
 - Current RASS is >2
 - The goal is deep sedation
 - Actively seizing
 - Active alcohol withdrawal
 - Active sedative agent dose escalation
 - FiO2 >50%
 - Neuromuscular blocker use
 - Increased intracranial pressure