PHARMACY & ACUTE CARE UNIVERSITY

Learning Objectives

Upon completion of this program, participants will be able to:

- Review the basic principles of mechanical ventilation
- Apply mechanical ventilation principles to improve the delivery of pharmaceutical care

Disclosures

- $\circ~$ I have no real or apparent conflicts of interest to disclose
- I will not be discussing off-label or investigational uses of medications

Mechanical Ventilation: What The Pharmacist Should Know

Mohammed Aldhaeefi, PharmD, BCCCP

Background

- Mechanical ventilation goes back to 1555
 - First negative pressure ventilation device was developed in 1920
 - First <u>positive pressure</u> ventilation device was developed in 1950 during the polio pandemic
- Mechanical ventilation is a basic and life-saving intervention among critically ill patients to support a patient's airway and prevent tissue hypoxia

Background

Indications

- To maintain oxygenation and ventilation:
 - Acute respiratory distress syndrome
 - Acute exacerbation of COPD/asthma
 - Airway collapse due to neuromuscular disease
- Airway protection:
 - Coma
- Combination of both

Basic Principles

- Positive pressure mechanical ventilation is achieved by placing Endotracheal Tube (ETT)
 - Mouth or nose

- ETT is smaller than our own airway
 - Results with more resistance and increase work of breathing

Basic Principles

- Tidal volume (TV):
 - Volume of gas inhaled or exhaled

- Minute ventilation (MV):

- Total volume of gas entering or leaving the lung per minute
- Product of tidal volume and respiratory rate
- Tidal volume X respiratory rate
- Fraction of inspired oxygen (FiO₂)
 - Percentage of oxygen
- Positive end expiratory pressure (PEEP)
 - The remaining pressure during the exhalation phase

Basic Principles: Monitoring

Marino PL, Sutin KM. The ICU Book. 3rd edition. Philadelphia, PA. Lippincott Williams & Wilkins Cawley MJ. Journal of Pharmacy Practice. 2011;24(1):7-16 Barbarash RA, Dasta JF, ed. DICP. 1990;24(10):959-970

- Assist-control ventilation (AC/VC):
 - Preset tidal volume and pressure varies
- Pressure controlled (PCV):
 - Preset pressure and the volume varies
- Both modes have:
 - Trigger
 - Cycle
 - Limit

- Assist-control ventilation (AC/VC):
 - Provides specific tidal volume and respiratory rate but the patient can generate additional tidal volume breaths
 - If the ventilator is stopping any patient's own breath, then it is called control-mode ventilation (CMV)
 - Simplicity and control the TV
 - For spontaneously breathing patients with weakened respiratory muscles
 - Hyperventilation and respiratory alkalosis (more of problem with stacking)

- Pressure controlled (PCV):
 - Provides a constant pressure throughout the inspiratory phase over constant time
 - Volume varies
 - Initial severe ARDS management might require PCV
 - Patients who failed AC/VC or have increased peak airway pressures during AC/VC or apneic patients
 - MORE, MORE and MORE sedation, paralysis, and pneumothorax

- Pressure Support (PSV):
 - All breaths are patient initiated
 - Patient controls the rate, tidal volume, and minute ventilation
 - Preset pressure that is delivered with each spontaneous patient breath
 - Most comfortable
 - Weaning mode, to decrease the airway resistance and dead space

Mechanical Ventilation Complications

- Circulation:
 - Thorax
 - Abdomen
 - Periphery

- Atrial filling (preload) reduction
- Resistance to ventricular emptying (afterload)
- Right atrial pressure increases during mechanical ventilation which can lead to decreases in RV preload and a fall in cardiac output

Mechanical Ventilation Complications

- Pneumothorax
- Oxygen toxicity
- Ventilator associated pneumonia
- Neuromuscular and muscular weakness
- Sedation and delirium

Mechanical Ventilation and ARDS

- Ventilator-induced lung injury (VILI):
 - Lung stress (pressure)
 - Lung strain (volume)
 - Plateau pressure?
- Benefit of using lung protection ventilation:
 - Minimize overdistension
 - Minimize hemodynamic compromise

Mechanical Ventilation and ARDS

- ARMA by ARDS Network:
 - Lower tidal volumes starting at 6 ml/kg, reduced by 1 ml/kg to maintain plateau pressure ≤30 cmH2O
 - Traditional tidal volumes starting at 12 ml/kg, reduced by 1 ml/kg PBW to maintain plateau pressure ≤50 cmH2O
 - Volume assist-control for both
 - Low tidal volume ventilation resulted with lower mortality and more ventilator-free days

Mechanical Ventilation and ARDS

- Where to start from:
 - Tidal volume = 6 mL/kg
 - High respiratory rate of 25-30 breaths/ min
 - Partial pressure of carbon dioxide (PaCO2) <50 mmHg
 - Plateau pressure <30 cm H2O
 - PEEP of >5 cm H_2O in all ARDS patients
 - High PEEP reserved for moderate to severe ARDS to increase oxygenation without decrease respiratory compliance or hemodynamic status

Sedation

- Respiratory center inhibition
 - Reduction of lung injury
- Improve patient-ventilator synchrony
- Reduction of oxygen consumption
- Agents:
 - Opioids
 - Propofol
 - Benzodiazepines

Sedation

- Over sedation:

- Prolonged mechanical ventilation
- Increase length of stay
- Increased risk of complications
- Increased diagnostic testing = \$\$\$
- Delirium

Conclusion

- Mechanical ventilation is lifesaving and life-sustaining modality among critically ill patients
- Pharmacists must always evaluate sedation plans for mechanical ventilated patients
- Over sedation could delay the recovery of mechanical ventilated patients