PHARMACY & ACUTE CARE UNIVERSITY

Beta Safe Than Sorry! Beta Blocker & Calcium Channel Blocker Toxicity Review

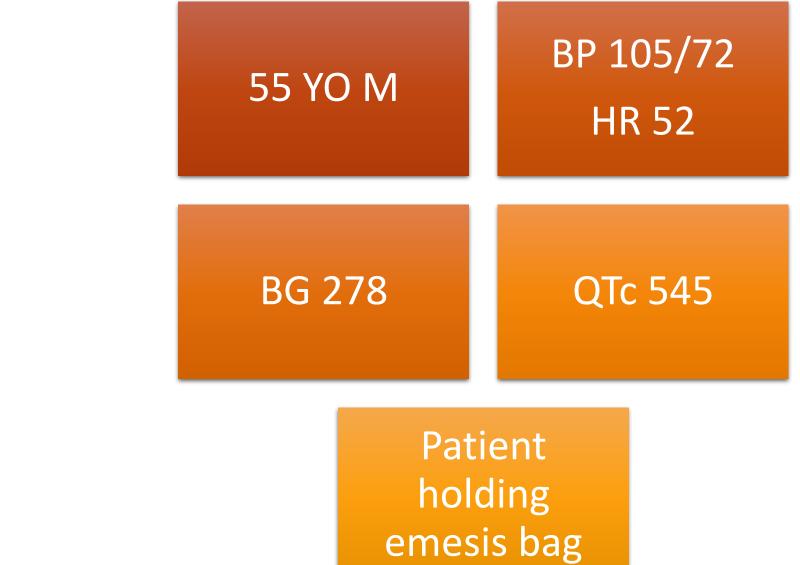
Caroline L. Ko, PharmD, BCPS, BCCCP EM & Critical Care Pharmacist Specialist Santa Clara Valley Medical Center San Jose, CA

Joshua Park, PharmD

Critical Care Clinical Pharmacist Specialist Providence Santa Rosa Memorial Hospital Santa Rosa, CA

Just another day in the ED...

"Could I have your help with this patient?"


EM Pharmacist

EM Physician

Patient

M.C.

"Patient is vomiting but QTc is 545, what can I give him?"

"Oh no! What else is going on? What brought him in?"

EM Physician

Icons: Microsoft 365 icon library

About 1 hour PTA, patient took entire bottle of amlodipine 10 mg tablets

Rx bottle at bedside: filled 3 days ago for 30 day supply

Patient is vomiting, complains of dizziness

A&Ox3 and following commands

HR trending down: $55 \rightarrow 52 \rightarrow 48$

Learning Objectives

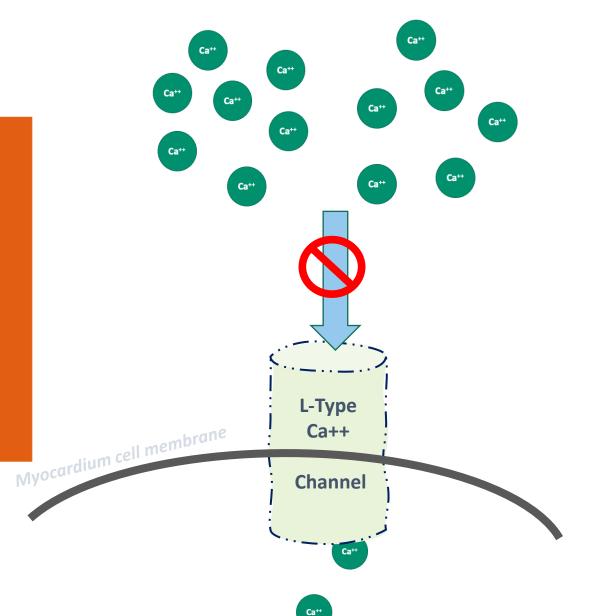
- Describe the mechanism of toxicity of calcium channel blockers (CCB) and beta blockers (BB)
- 2. Review treatment options that have been studied in CCB and BB toxicity and briefly describe the quality of evidence for each
- 3. Predict & mitigate complications of high-dose euglycemic insulin therapy
- 4. Describe the management of specific toxicity profiles seen with overdoses of propranolol and sotalol

Calcium Channel Blockers

	Dihydropyridine (DHP)	Non-DHP (phenylalkylamine)	Non-DHP (benzothiaprine)
Agents	Amlodipine Nifedipine Nicardipine	Verapamil	Diltiazem
Physiologic Properties	Selective affinity for vascular smooth muscle	Strong affinity for myocardium & vascular smooth muscle	Strong affinity for myocardium, less for vascular smooth muscle
Cardiac Effects	SVR = ↓↓	SVR = \leftrightarrow Inotropy = $\checkmark \checkmark \checkmark$ Chronotropy = $\checkmark \checkmark \checkmark$	$SVR = \leftrightarrow$ Inotropy = $\checkmark \checkmark$ Chronotropy = $\checkmark \checkmark$

SVR = Systemic vascular resistance

Lange (2018), McGraw Hill (2019) https://www.ncbi.nlm.nih.gov/books/NBK537147/



CCB Pharmacology

MOA: Block voltage-gated L-type Ca⁺⁺ change **Myocardium Smooth Muscles** Created by iconfield from the Noun Projec

Pancreas

Myocytes, SA node, AV node

- Inhibition of Ca⁺⁺ influx ↓ rate of pacemaker cell depolarization
 - Myocardial depression
 - Bradycardia
- Non-DHP (verapamil >> diltiazem)

Peripheral

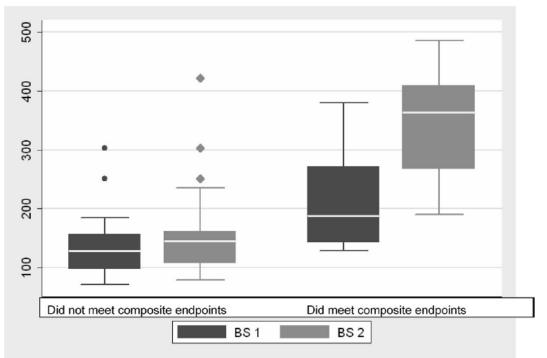
Vasculature

- 70 mV

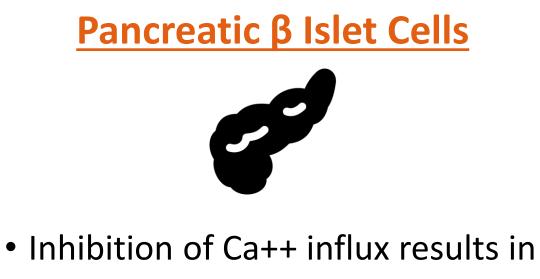
Resting Membrane Potential

Myocardium

- 90 mV


Vascular Smooth Muscles

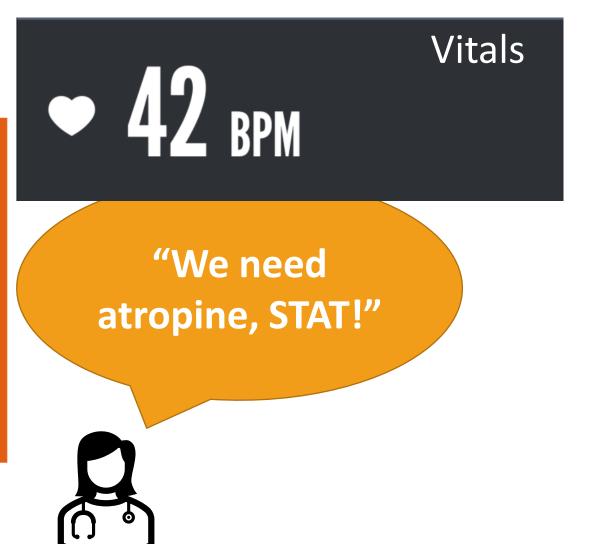
- Inhibition of Ca++ influx results in
 - Vasodilation = \downarrow blood pressure
- DHP CCB (amlodipine, nifedipine)
 - Preferentially bind with peripheral vascular smooth muscles
- In overdose, selectivity is lost


Assessment of hyperglycemia after calcium channel blocker overdoses involving diltiazem and verapamil Levine et al (2007)

Retrospective case series (n=40) Composite Endpoint =

Bottom Line

Serum glucose concentrations may correlate with the severity of CCB toxicity and overall prognosis.



- Impaired insulin release
- Hyperglycemia

Hypoinsulinemia ↓
 cardiac myocyte glucose uptake

EM Physician

EM Pharmacist

Overview of Treatment Options

Calcium
Atropine
Vasopressors
Glucagon
High-dose insulin euglycemic therapy (HIET)
Intralipid emulsion

Enhanced elimination strategies

Emerging therapies

Initial Management

Decontamination

- Activated charcoal if feasible and timing is appropriate
- Gastric lavage, whole bowel irrigation

Fluids

- Conservative, response-based approach
- Caution Fluid overload, pulmonary edema

Atropine

- Dose = 1 mg IVP; may repeat Q3-5 min
- Symptomatic bradycardia or conduction disturbances

IV Calcium

Mechanism

Evidence

- Majority of animal studies reduced mortality, improved hemodynamics
- SCCM (2017) 1st line therapy to increase contractility and blood pressure (1D)

Calcium: Dosing

	Calcium gluconate	Calcium chloride
Bolus dose	3 – 6 g	1 – 2 g
Frequency	Q 10-20 min	Q 10-20 min
Infusion	0.6-1.2 mL/kg/h	0.2-0.4 mL/kg/h

Calcium: Practical Considerations

IV access:

- Vesicant!
- Central line preferred
 - Especially for CaCl₂ bolus and any continuous infusion

Preparation/Administration:

- Initial bolus: consider CaGluc 3g in 50 mL NS/D5 via peripheral line
- Max rate 200 mg/min (3g over 15 min)

Monitoring:

- Calcium level q1-2h
- IV site
 - In case of extravasation \rightarrow hyaluronidase¹

Glucagon

Not included in the SCCM consensus guideline...

"The workgroup suggests not to use glucagon because case series reported variable effects. Vomiting and hyperglycemia have been reported in several case reports, and more effective interventions for the treatment of CCB poisoning are available"

Vasopressors and Inotropes

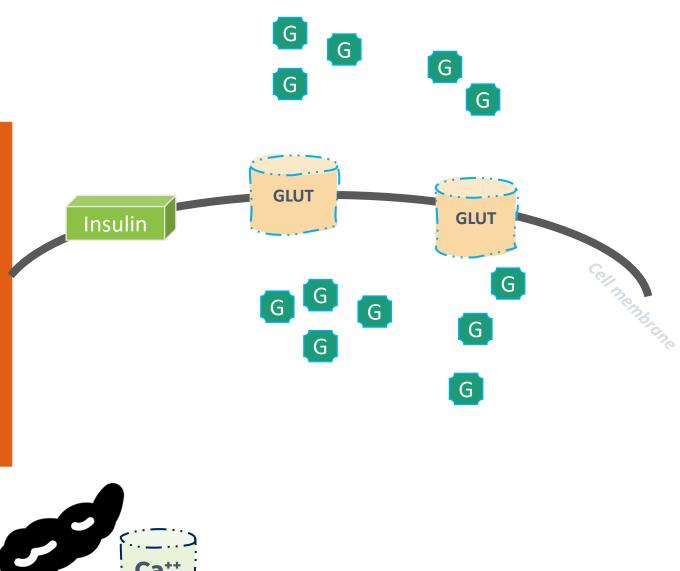
SCCM consensus guideline recommendations

- Norepinephrine (1D) increase blood pressure
- Epinephrine (1D) increase contractility and heart rate
- Dopamine or vasopressin (as single vasoactive agent) recommend against
- Phenylephrine no recommendation

Inotropes

- Dobutamine (2D) increase contractility if cardiogenic shock
- Milrinone (2D) Alternative when dobutamine may not be effective (ex: concomitant beta blockade)

High-dose Insulin Euglycemic Therapy (HIET)

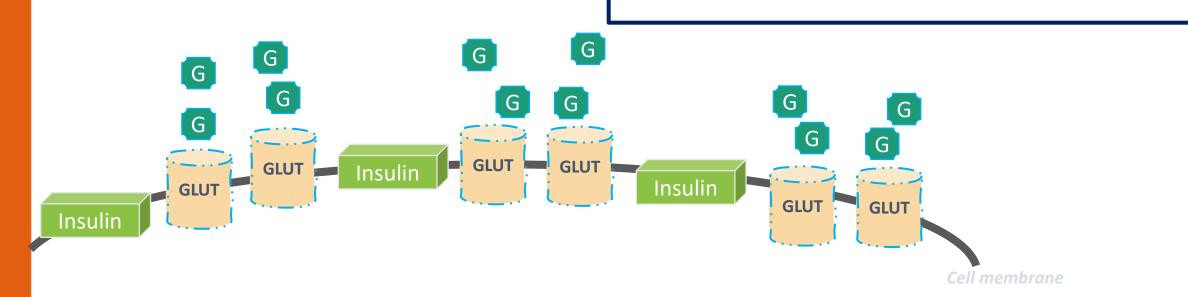

Cardiac physiology:

- Energy \rightarrow Free fatty acid vs carbohydrates
- CCB inhibit insulin release
- Insulin resistance

Mechanism

- Inotropy
- Improves intracellular glucose utilization
- Vasodilation $\rightarrow \uparrow$ cardiac output

Cardiac Physiology


- Cardiac fuel
 - Non-stressed \rightarrow free fatty acid
 - Stressed \rightarrow carbohydrates
- Insulin release mediated via Ca⁺⁺ channel in pancreas
- CCB toxicity \$\sqrtheta\$ insulin release leading to ineffective glucose utilization

High-dose Insulin Euglycemic Therapy

• Mechanism

- 1. ↑ intracellular glucose transport
- 2. ↑ Inotropy
- 3. Vasodilation to \uparrow cardiac output

HIET: Evidence

Holger et al (2011)

- Consecutive case series (n=12) in BB/CCB/mixed agent overdoses
 - HIET was sole inotropic therapy
 - 7 patients on vasopressors \rightarrow tapered off after HIET initiation
 - Mean max insulin infusion rate = 8.35 unit/kg/h (range: 0.5 21)
- 11 out of 12 survived to hospital discharge
 - 7 out of 11 had hypoglycemic events
 - 8 out of 11 experienced hypokalemia
- **Conclusion**: 1 10 unit/kg/h effective for toxin-induced cardiogenic shock

HIET: Evidence

Page et al (2018)

- Retrospective chart review from two Australian toxicology units
- Beta blocker (n=12), calcium channel blocker (n=6), mixed (n=3)
 - Median loading dose = 80 unit (range: 50 125 units)
 - Median max infusion rate = 150 unit/h (range: 38 1,500 units/h)
- Safety
 - 73% developed hypoglycemia despite median dextrose 37.5g/hr
 - Persisted 18h after d/c of insulin drip
 - 82% developed hypokalemia (K < 3.5 mEq/L)
 - No complications from hypoglycemia or hypokalemia noted

Cole et al (2018)

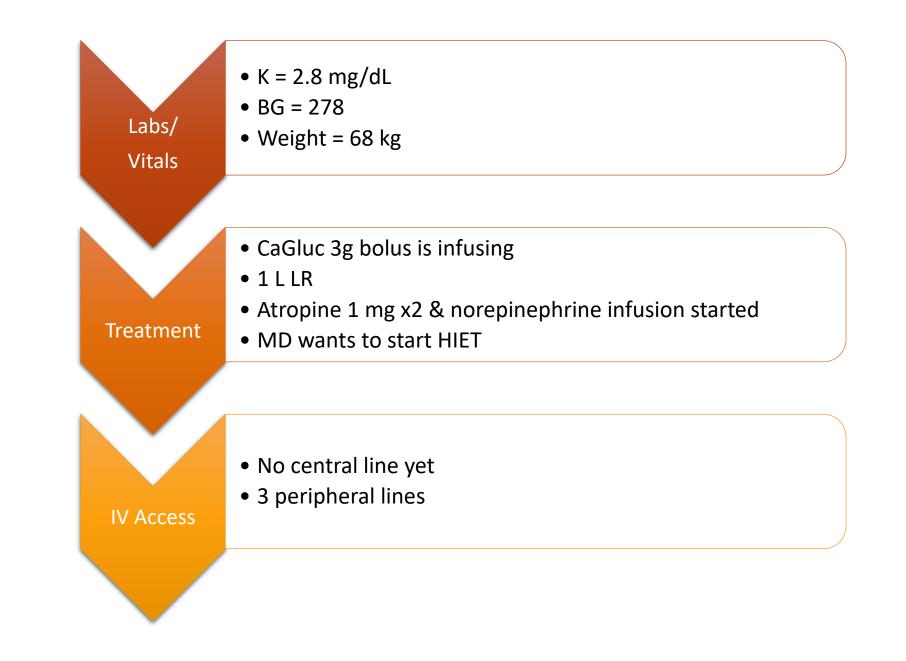
- Regional Poison Center (MN)
- BB (44%), CCB (33%), or both (23%) overdose who received HIET (n=199)
 - Median bolus = 1 unit/kg
 - Median peak infusion = 8 unit/kg/h (range: 0.5 18)
 - Median # of days on HIET = 2 days (range: 1 7)
- Safety:
 - Hypokalemia 29%
 - Hypoglycemia rate of 50% if using D10 or below;
 30% using D20 or higher

- Check baseline creatinine, glucose, and potassium. Replace potassium if hypokalemia is present.
- Administer 25-50 g of dextrose 50% (D50) IV if blood glucose < 200 mg/dL.
- Administer 1 U/kg of regular insulin IV push.
- Begin infusion of 1 U/kg/hr of regular insulin along with an infusion of dextrose; use D20 via a peripheral IV line until central access has been obtained, then start D50 at 25 g/hr. Initial effects of HDI take at least 5-10 minutes to manifest.
- Obtain central venous access for safe infusion of concentrated glucose.
- Concentrate all fluids to avoid pulmonary edema. Consider using stock D70 as the glucose infusion. The insulin infusion should be concentrated to 10 U/mL.
- Increase insulin infusion 1-2 U/kg/hr every 10-15 minutes to a maximum of 10 U/kg/hr until shock improves. Doses up to 22 U/kg/hr have been safely used.
- Monitor blood glucose every 10-15 minutes until stable, then every 1-2 hour after steady state is reached. For every hypoglycemic reading, give 25 g of D50 as a bolus and increase the dextrose infusion by 25 g/hr.
- Monitor serum potassium every hour during titration, then every 4-6 hours once steady state is reached.
- Regarding electrolytes, maintain serum potassium ≥ 2.8 mEq/L and calcium 1.5-2 times the upper limit of normal. Monitor magnesium and phosphorus every 4-6 hours and replace as needed. We recommend standard ICU magnesium and phosphorus replacement protocols.
- Once stable, wean vasopressors before HDI. Contact the Poison Center regarding weaning of HDI once stability has been reached.

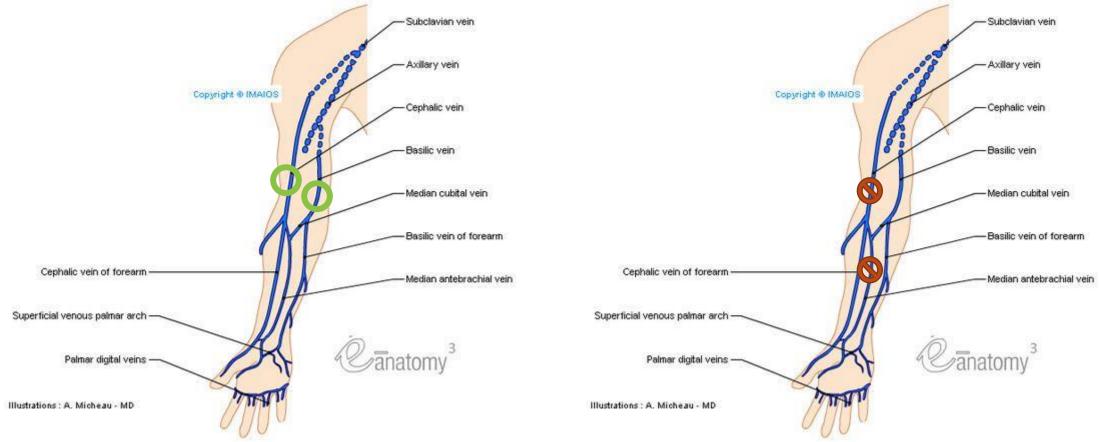
HIET: Evidence

SCCM consensus guideline (2017)		
 ↑ Cardiac contractility (1D) ↑ Blood pressure (2D) 	Refractory to 1 st line therapies Refractory shock Peri-arrest	

HIET: Monitoring


	Blood Glucose (BG)	Potassium (K ⁺)
PRIOR TO	D50 if < 200 mg/dL	K+ > 3.3 mEq/L
INITIATION	Mg, Ca ⁺⁺ , Phos, central access	

	MONITORING	TARGET
BG	Q15min until stable; then Q1H	100 – 200 mg/dL
K+	Q1H while titrating insulin	Normokalemia



Patient M.C.

Infuse potassium at 10 mEq/hr into 2 peripheral IV lines simultaneously (Avoid infusing in two veins that connect within periphery)

Illustrations: https://www.imaios.com/en/e-Anatomy/Upper-Limb/Upper-limb-Illustrations

HIET: Insulin Dosing

HIET DOSING	Bolus	= 1 unit/kg IV push
	Infusion	= Start: 1 unit/kg/h
	Titration	= 1 – 2 units/kg/h
	Interval	= Q 10 – 15 min
	Max Dose	= ~ 10 unit/kg/hr

HIET: Preventing hypoglycemia

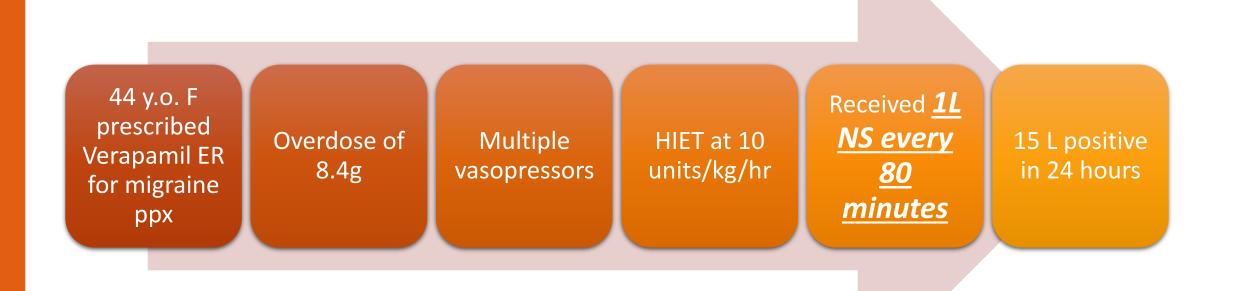
DEXTROSE	Bolus	= 25-50 g initially if BG < 200
	Infusion	= Initial rate = 25 g/h
	Monitor BG	= Q 10 – 15 min until stable
	Hypoglycemia	= Bolus 25 g; then 个 infusion by 25 g/h

PMID 29452919

Assessment Question

After potassium has resulted within range, you are ready to begin HIET. BG is 278. Which of the following doses of dextrose and insulin are recommended for your 68 kg patient?

A) Insulin bolus 68 units x1, then 68 units/h + D5 @ 50 mL/h
B) Insulin bolus 34 units x1, then 34 units/h + D10 @ 50 mL/h
c) Insulin bolus 68 units x1, then 68 units/h + D20 @ 125 mL/h
d) Insulin bolus 34 units x1, then 34 units/h + D20 @ 125 mL/h



Assessment Question

After potassium has resulted within range, you are ready to begin HIET. BG is 278. Which of the following doses of dextrose and insulin are recommended for your 68 kg patient?

A) Insulin bolus 68 units x1, then 68 units/h + D5W @ 50 mL/h
B) Insulin bolus 34 units x1, then 34 units/h + D10W @ 50 mL/h
c) Insulin bolus 68 units x1, then 68 units/h + D20W @125 mL/h
D) Insulin bolus 34 units x1, then 34 units/h + D20W @125 mL/h

HIET: Clinical Considerations – Fluid Overload

Dextrose

- Use D20 via peripheral line; D50 or D70 when central access available
- Alternative: D50 boluses instead of infusion

Insulin

- Prepare concentrated insulin infusion
- Concentration Up to 16 units/mL¹
- Stability 14 days at room and refrigerated temperature

Bottom Line

Conservative IV fluid approach, concentrate everything you can, monitor for pulmonary edema

As the IV room pharmacist, you are attempting to concentrate the insulin regular infusion for a HIET patient on rate of 132 units/hr. Which of the following concentrations is the maximum concentration supported by literature?

- A) Insulin 1 unit/mL
- B) Insulin 5 units/mL
- C) Insulin 16 units/mL
- D) Insulin 100 units/mL

As the IV room pharmacist, you are attempting to concentrate the insulin regular infusion for a HIET patient on rate of 132 units/hr. Which of the following concentrations is the maximum concentration supported by literature?

- A) Insulin 1 unit/mL
- B) Insulin 5 units/mL
- C) Insulin 16 units/mL
- D) Insulin 100 units/mL

Intralipid Emulsion (ILE)

Proposed Mechanisms

- "Lipid Sink" theory
 - Sequesters lipid-soluble drugs within intravascular compartment
- Energy source
- Activation of L-type Ca⁺⁺ channels = \uparrow contractility

PMID 25534900, 25684131, 27608281 Image: <u>https://serfinitymedical.com/products/baxter-healthcare-bag-iv-intravia-250ml-6package-8-pkca-2b8012-1258394</u> & <u>https://www.fresenius-kabi.com/in/products/intralipid</u>

Intralipid Emulsion

	Bolus *	= 1.5 mL/kg over 1 min	
Lipid Emulsion (20%)	Infusion**	= 0.25 to 0.5 mL/kg/min	
	Duration	= 30 to 60 min	
	Max Total Dose	Not established; ~10-12 mL/kg	

* Use LBW; may repeat bolus for persistent cardiovascular collapse

** Can double the infusion rate for persistent hemodynamic instability

ILE: Clinical Considerations

Monitoring

• Adverse effects: Pulmonary toxicity, fat embolism, pancreatitis

Lipemia

- Laboratory derangements; delays in lab evaluation
- Potential issues involving concurrent use with extracorporeal assist devices
- Interference with other therapies that have evidence of benefit

ILE: Evidence

Lipid Emulsion Workgroup (2016) Recommendations:

- In life-threatening toxicity due to diltiazem, verapamil, or dihydropyridine calcium channel blockers, we suggest not using ILE as first-line therapy (2D).
- In cardiac arrest due to toxicity from calcium channel blockers, our recommendation is neutral regarding the use of ILE.

SCCM consensus guideline (2017)

- Refractory to first line treatments (2D)
- Refractory shock or peri-arrest (1D)

Enhanced Elimination, EXTRIP

EXTRIP Workgroup Systematic Review and Recommendations (2021)

"In patients severely poisoned with amlodipine, diltiazem or verapamil, we recommend against using ECTR in addition to standard care rather than standard care alone"

Strong recommendation, very low quality of the evidence

Patient M.C.

Insulin 1 unit/kg bolus and 1 unit/kg/h → titrated to 2 units/kg/h
BG checked q15min x4 then q1h → has been ~130-190 with intermittent D50
25g D50 ordered PRN BG < 100

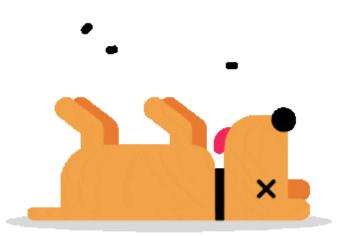
• Calcium chloride (undiluted) at 2 g/h infusing via central line Calcium

Norepinephrine infusing at 16 mcg/min

Pressors

• ILE started with 100 mL bolus and 20 mL/min infusion

Lipids


HR begins to trend up!

"MICU bed is ready! Report has been called. Let's roll!"

EM RN

EM Pharmacist

CCB Toxicity -Summary

HIET & Calcium are the priority

 Safety considerations & monitoring will keep you busy!

Atropine, pressors, fluids can be helpful initially

Avoid glucagon ILE for refractory cases

Concentrate drips as soon as you can

Beta Blocker Toxicity

Patient N.S.

23-year-old female presented with seizure

Professional musician, prescribed propranolol 10 mg daily PRN for stage fright

Has a very important competition next week

In frustration over shakiness during rehearsal, took entire bottle of propranolol (qty 90)

Beta Blockers

MOA: Competitive antagonism at cardiac β -adrenergic receptors

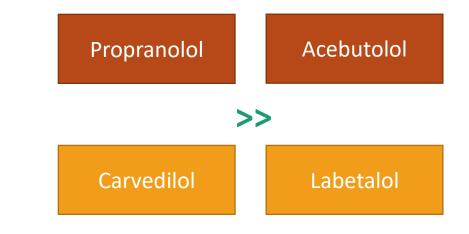
- Inverse agonism at both B2 and B3 receptors
- Membrane stabilizing effects
- Metabolic effects

Beta Blockers: Pharmacokinetics

	Receptor Selectivity	Physiologic Properties	Elimination
Atenolol	β1		Renal
Carvedilol	β ₁ , β ₂ , α ₁	MSA(+) ^a , Vasodilation	Hepatic, Biliary
Labetalol	β ₁ , β ₂ , α ₁	MSA(+) ^a Vasodilation (PO 1:3, IV 1:7) ^b	Hepatic
Metoprolol	β1	MSA (±) ^a	Hepatic
Nebivolol	β1	Vasodilation via nitric oxide release	Hepatic
Propranolol	β ₁ , β ₂ ,	MSA (+++) ^a	Hepatic
Sotalol	β ₁ , β ₂	Class II & III ^c antiarrhythmic effects	Renal

^aMembrane stabilizing activity; low activity (+), high activity (+++) ^bRatio of α to β blockade

^cPossesses both K⁺ and Na⁺ channel blocking properties


Membrane Stabilizing Activity (MSA)

Mechanism

- Na⁺ channel blockade
- Class I antiarrhythmics characteristics

Clinical Manifestations of Toxicity

- Widened QRS
- Seizures
 - Most associated with propranolol (> 1.2 g)

Treatment Options		
Sodium Bicarbonate	Benzodiazepines	
1-2 mEq/kg	Pick your favorite	

Agents with Potassium Channel Blockade

Mechanism

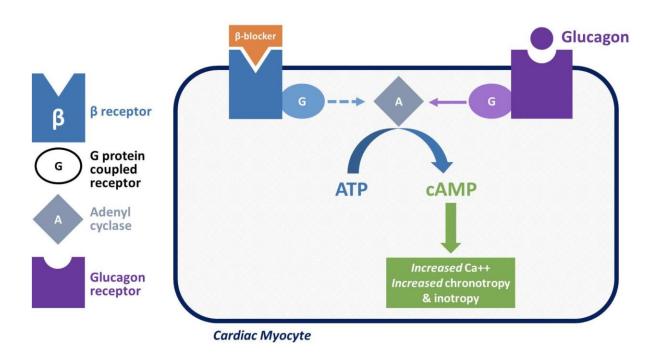
• Block HERG K+ channels (repolarization)

Clinical Manifestations of Toxicity

- Toxicity occurs with reduced renal clearance
- QT prolongation
- Ventricular dysrhythmias, Torsades de Pointes
 - Highest risk 4 15 h post ingestion
 - Prolonged toxicity cases of >100 h

Treatment Options		
Mg SO ₄ (IV)		
Isoproterenol	Pacing	

Similar to CCB overdose management:


Decontamination

Initial Management

- Conservative with fluids
- Atropine
- IV Calcium
- Vasopressors

Beta Blockers

Glucagon

- ↑ adenylyl cyclase activity independent of β receptor activity
- Inhibits phosphodiesterase
 - ↓ cAMP breakdown
- Results in
 - ↑ Inotropy

Lange (2018), McGraw Hill (2019) Figure from: https://missouripoisoncenter.org/beta-blocker-overdose/

Glucagon: Is there a role?

Evidence:

- Zero human trials of glucagon for beta blocker toxicity
- Animal studies

• Rotella et al (2020) systematic review

- Minor improvements in hemodynamics primarily via \uparrow HR
- Limitations Concurrent use of other therapies, variable results
- Bottom Line = No difference in survival compared to HIET or ILE

Glucagon: Evidence

Petersen et al (2020)

Design	Randomized, crossover trial in (n=10) health adult males				
Allocation	Saline + saline	Esmolol + saline	Esmolol + glucagon bolus	Saline + glucagon (inf)	Saline + glucagon bolus
Goal	Investigate hemodynamic effects and safety of glucagon with or without beta blockade			th or without	

PMID 33103603

Petersen et al (2020) – Findings

Glucagon \uparrow BP/HR within 3-5 min of bolus (~15 min for infusion)

Comparable hemodynamic effects with glucagon infusion compared to bolus

• Longer lasting hemodynamic effects compared to bolus dosing strategy

High risk of ADEs –

- (n=2) participants unable to complete study due to vomiting
- Nausea occurred in 70-80% despite pretreatment with ondansetron 8 mg

Glucagon Dosing	Bolus *	= 50 – 150 mcg/kg or 3-10 mg (IV)	
	Infusion	= 3 – 10 mg/h	
	Titrate	To hemodynamic response**	
	Supply	 For 100 kg adult – 8 h supply = 90 mg 24 h supply = 250 mg 	

*Administer slowly over at least 1 minute; may repeat if no clinical response

**Tachyphylaxis is common and will often occur

PMID 32310006

Glucagon: Bottom Line

Who?

• Bradycardia, cardiogenic shock, cardiac pump failure

Things to consider prior to and throughout therapy –

- High risk aspiration, nausea/vomiting
- Vagal response \rightarrow exacerbate hypotension and bradycardia
- Tachyphylaxis after 12–24 h
- Pharmacy supply issue
- When reconstituting
 - Supplied diluent contains glycerin \rightarrow C/I in cardiac decompensation
 - Consider using sterile water or D5W to reconstitute!

Which of the following patients might be a candidate for IV glucagon?

- A) Patient who received activated charcoal for a propranolol overdose and is currently vomiting
- B) Patient receiving HIET for 2 hours with improvement in BP from $80/42 \rightarrow 102/78$
- C) Patient who took double his verapamil dose for the past 3 days, with BP 108/73 and HR 60
- D) Patient who ingested 30 tablets of atenolol 50 mg about 1 hour ago with BP 89/45 and HR 48, s/p 1 dose of atropine 1 mg

Which of the following patients might be a candidate for IV glucagon?

- A) Patient who received activated charcoal for a propranolol overdose and is currently vomiting
- B) Patient receiving HIET for 2 hours with improvement in BP from $80/42 \rightarrow 102/78$
- C) Patient who took double his verapamil dose for the past 3 days, with BP 108/73 and HR 60
- D) Patient who ingested 30 tablets of atenolol 50 mg about 1 hour ago with BP 89/45 and HR 48, s/p 1 dose of atropine 1 mg

ILE: Beta Blockers

Lipophilicity

- *High* = Propranolol
- *Moderate* = Carvedilol, labetalol, metoprolol
- *Low* = Atenolol, sotalol

Smolinske et al (2018)¹

• 5 out of 102 (4.9%) overdoses obtained ROSC post-arrest

ILE: Beta Blockers

Cases w/ success¹

- Refractory to pressors, HIET, calcium
- In cardiac arrest
- Mixed OD including propranolol & other agents

Cases w/ harm or fatality²

- Mixed OD including
 CCB + BB → initial
 reversal of shock,
 death w/in 12 h
- Propranolol \rightarrow fat embolism

EXTRIP Workgroup Systematic Review and Recommendations (2021)

	ECTR in	Preferred ECTR modality	
Atenolol	YES	Renal impairment + refractory bradycardia/hypotension	Intermittent HD
Propranolol	NO	Recommended against ECTR	N/A
Sotalol	YES	Renal impairment + refractory bradycardia/hypotension or torsade de Pointes	Intermittent HD
	NO	If ECTR used solely based on QT interval	

PMID 34112223

Emerging Therapies

- Methylene Blue
- Levosimendan
- Cyclodextrins (e.g. Sugammadex)
- MARS: Molecular adsorbent recirculating system therapy

PMID 32310006, 27196698, 23724791, 23334490, 30598720, 30775633

Patient N.S.

23-year-old female w/ seizure d/t propranolol OD

BP 102/72, HR 53 BG 54

A&O x 2, drowsy, confused

EKG shows QTc of 457, QRS of 115 msec

Which of the following interventions would be appropriate for N.S.?

- A) Discontinue propranolol
- B) Sodium bicarbonate bolus 1 mEq/kg
- C) Magnesium sulfate 2g IV over 20 minutes
- D) Calcium gluconate 3g IV over 15 minutes

Which of the following interventions would be appropriate for N.S.?

- A) Discontinue propranolol
- B) Sodium bicarbonate bolus 1 mEq/kg
- C) Magnesium sulfate 2g IV over 20 minutes
- D) Calcium gluconate 3g IV over 15 minutes

BB Toxicity -Summary

HIET remains the priority

Calcium, atropine, pressors, fluids can be helpful initially

More evidence for glucagon vs. CCB

• Most human evidence limited to case reports

ILE

Consider in cardiac arrest w/ lipophilic BBs
Limited to case reports

MSA, lipophilicity, K channel blockade affect tx

References

Book Publisher/Year/Ed.	Title
Lange (2018) 7 th Ed.	Poisoning and Drug Overdose
StatPearls (2022)	Calcium Channel Blocker Toxicity (https://www.ncbi.nlm.nih.gov/books/NBK537147/)
McGraw Hill (2019) 11 th Ed.	Goldfrank's Toxicologic Emergencies

PMID	Title
27749343	Experts Consensus Recommendations for the Management of Calcium Channel Blocker Poisoning in Adults
30378442	Risk of Fluid Overload From Failure to Concentrate High-Dose Insulin as an Intravenous Antidote
27432286	Stability of high-dose insulin in normal saline bags for treatment of calcium channel blocker and beta blocker overdose
25534900	Intravenous lipid emulsion in the emergency department: a systematic review of recent literature
25684131	Role of intravenous lipid emulsions in the management of calcium channel blocker and β-blocker overdose: 3 years experience of a university hospital
27608281	Evidence-based recommendations on the use of intravenous lipid emulsion therapy in poisoning
33555964	Extracorporeal treatment for calcium channel blocker poisoning: systematic review and recommendations from the EXTRIP workgroup
4872564	Cardiovascular effects of glucagon in man
14514004	Glucagon in beta-blocker and calcium channel blocker overdoses: a systematic review
32310006	Treatment for beta-blocker poisoning: a systematic review
33103603	High-Dose Glucagon Has Hemodynamic Effects Regardless of Cardiac Beta-Adrenoceptor Blockade: A Randomized Clinical Trial
27196698	A systematic analysis of methylene blue for drug-induced shock
23724791	Evaluation of the effectiveness of sugammadex for verapamil intoxication
30598720	Hemodynamic improvement using methylene blue after calcium channel blocker overdose
23334490	Methylene blue reverses recalcitrant shock in β-blocker and calcium channel blocker overdose

References, cont'd

PMID	Title
30775633	Treatment of Severe Amlodipine Toxicity With Molecular Adsorbent Recirculating System
34112223	Extracorporeal treatment for poisoning to beta-adrenergic antagonists: systematic review and recommendations from the EXTRIP workgroup
24420913	Management of extravasation injuries: a focused evaluation of noncytotoxic medications
21819291	High-dose insulin: a consecutive case series in toxin-induced cardiogenic shock
29069937	The safety of high-dose insulin euglycaemia therapy in toxin-induced cardiac toxicity
29452919	High dose insulin for beta-blocker and calcium channel-blocker poisoning
30260247	Utilization of lipid emulsion therapy in fatal overdose cases: an observational study
22002529	Bet 2: intralipid/lipid emulsion in beta-blocker overdose
30260247	Utilization of lipid emulsion therapy in fatal overdose cases: an observational study

Thank you!

Beta Safe Than Sorry! Beta Blocker & Calcium Channel Blocker Toxicity Review

Caroline L. Ko, PharmD, BCPS, BCCCP EM & Critical Care Pharmacist Specialist Santa Clara Valley Medical Center San Jose, CA

Joshua Park, PharmD

Critical Care Clinical Pharmacist Specialist Providence Santa Rosa Memorial Hospital Santa Rosa, CA