Back to Course

2025 PACUPrep BCCCP Preparatory Course

0% Complete
0/0 Steps
  1. Pulmonary

    ARDS
    4 Topics
    |
    1 Quiz
  2. Asthma Exacerbation
    4 Topics
    |
    1 Quiz
  3. COPD Exacerbation
    4 Topics
    |
    1 Quiz
  4. Cystic Fibrosis
    6 Topics
    |
    1 Quiz
  5. Drug-Induced Pulmonary Diseases
    3 Topics
    |
    1 Quiz
  6. Mechanical Ventilation Pharmacotherapy
    5 Topics
    |
    1 Quiz
  7. Pleural Disorders
    5 Topics
    |
    1 Quiz
  8. Pulmonary Hypertension (Acute and Chronic severe pulmonary hypertension)
    5 Topics
    |
    1 Quiz
  9. Cardiology
    Acute Coronary Syndromes
    6 Topics
    |
    1 Quiz
  10. Atrial Fibrillation and Flutter
    6 Topics
    |
    1 Quiz
  11. Cardiogenic Shock
    4 Topics
    |
    1 Quiz
  12. Heart Failure
    7 Topics
    |
    1 Quiz
  13. Hypertensive Crises
    5 Topics
    |
    1 Quiz
  14. Ventricular Arrhythmias and Sudden Cardiac Death Prevention
    5 Topics
    |
    1 Quiz
  15. NEPHROLOGY
    Acute Kidney Injury (AKI)
    5 Topics
    |
    1 Quiz
  16. Contrast‐Induced Nephropathy
    5 Topics
    |
    1 Quiz
  17. Drug‐Induced Kidney Diseases
    5 Topics
    |
    1 Quiz
  18. Rhabdomyolysis
    5 Topics
    |
    1 Quiz
  19. Syndrome of Inappropriate Antidiuretic Hormone (SIADH)
    5 Topics
    |
    1 Quiz
  20. Renal Replacement Therapies (RRT)
    5 Topics
    |
    1 Quiz
  21. Neurology
    Status Epilepticus
    5 Topics
    |
    1 Quiz
  22. Acute Ischemic Stroke
    5 Topics
    |
    1 Quiz
  23. Subarachnoid Hemorrhage
    5 Topics
    |
    1 Quiz
  24. Spontaneous Intracerebral Hemorrhage
    5 Topics
    |
    1 Quiz
  25. Neuromonitoring Techniques
    5 Topics
    |
    1 Quiz
  26. Gastroenterology
    Acute Upper Gastrointestinal Bleeding
    5 Topics
    |
    1 Quiz
  27. Acute Lower Gastrointestinal Bleeding
    5 Topics
    |
    1 Quiz
  28. Acute Pancreatitis
    5 Topics
    |
    1 Quiz
  29. Enterocutaneous and Enteroatmospheric Fistulas
    5 Topics
    |
    1 Quiz
  30. Ileus and Acute Intestinal Pseudo-obstruction
    5 Topics
    |
    1 Quiz
  31. Abdominal Compartment Syndrome
    5 Topics
    |
    1 Quiz
  32. Hepatology
    Acute Liver Failure
    5 Topics
    |
    1 Quiz
  33. Portal Hypertension & Variceal Hemorrhage
    5 Topics
    |
    1 Quiz
  34. Hepatic Encephalopathy
    5 Topics
    |
    1 Quiz
  35. Ascites & Spontaneous Bacterial Peritonitis
    5 Topics
    |
    1 Quiz
  36. Hepatorenal Syndrome
    5 Topics
    |
    1 Quiz
  37. Drug-Induced Liver Injury
    5 Topics
    |
    1 Quiz
  38. Dermatology
    Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis
    5 Topics
    |
    1 Quiz
  39. Erythema multiforme
    5 Topics
    |
    1 Quiz
  40. Drug Reaction (or Rash) with Eosinophilia and Systemic Symptoms (DRESS)
    5 Topics
    |
    1 Quiz
  41. Immunology
    Transplant Immunology & Acute Rejection
    5 Topics
    |
    1 Quiz
  42. Solid Organ & Hematopoietic Transplant Pharmacotherapy
    5 Topics
    |
    1 Quiz
  43. Graft-Versus-Host Disease (GVHD)
    5 Topics
    |
    1 Quiz
  44. Hypersensitivity Reactions & Desensitization
    5 Topics
    |
    1 Quiz
  45. Biologic Immunotherapies & Cytokine Release Syndrome
    5 Topics
    |
    1 Quiz
  46. Endocrinology
    Relative Adrenal Insufficiency and Stress-Dose Steroid Therapy
    5 Topics
    |
    1 Quiz
  47. Hyperglycemic Crisis (DKA & HHS)
    5 Topics
    |
    1 Quiz
  48. Glycemic Control in the ICU
    5 Topics
    |
    1 Quiz
  49. Thyroid Emergencies: Thyroid Storm & Myxedema Coma
    5 Topics
    |
    1 Quiz
  50. Hematology
    Acute Venous Thromboembolism
    5 Topics
    |
    1 Quiz
  51. Drug-Induced Thrombocytopenia
    5 Topics
    |
    1 Quiz
  52. Anemia of Critical Illness
    5 Topics
    |
    1 Quiz
  53. Drug-Induced Hematologic Disorders
    5 Topics
    |
    1 Quiz
  54. Sickle Cell Crisis in the ICU
    5 Topics
    |
    1 Quiz
  55. Methemoglobinemia & Dyshemoglobinemias
    5 Topics
    |
    1 Quiz
  56. Toxicology
    Toxidrome Recognition and Initial Management
    5 Topics
    |
    1 Quiz
  57. Management of Acute Overdoses – Non-Cardiovascular Agents
    5 Topics
    |
    1 Quiz
  58. Management of Acute Overdoses – Cardiovascular Agents
    5 Topics
    |
    1 Quiz
  59. Toxic Alcohols and Small-Molecule Poisons
    5 Topics
    |
    1 Quiz
  60. Antidotes and Gastrointestinal Decontamination
    5 Topics
    |
    1 Quiz
  61. Extracorporeal Removal Techniques
    5 Topics
    |
    1 Quiz
  62. Withdrawal Syndromes in the ICU
    5 Topics
    |
    1 Quiz
  63. Infectious Diseases
    Sepsis and Septic Shock
    5 Topics
    |
    1 Quiz
  64. Pneumonia (CAP, HAP, VAP)
    5 Topics
    |
    1 Quiz
  65. Endocarditis
    5 Topics
    |
    1 Quiz
  66. CNS Infections
    5 Topics
    |
    1 Quiz
  67. Complicated Intra-abdominal Infections
    5 Topics
    |
    1 Quiz
  68. Antibiotic Stewardship & PK/PD
    5 Topics
    |
    1 Quiz
  69. Clostridioides difficile Infection
    5 Topics
    |
    1 Quiz
  70. Febrile Neutropenia & Immunocompromised Hosts
    5 Topics
    |
    1 Quiz
  71. Skin & Soft-Tissue Infections / Acute Osteomyelitis
    5 Topics
    |
    1 Quiz
  72. Urinary Tract and Catheter-related Infections
    5 Topics
    |
    1 Quiz
  73. Pandemic & Emerging Viral Infections
    5 Topics
    |
    1 Quiz
  74. Supportive Care (Pain, Agitation, Delirium, Immobility, Sleep)
    Pain Assessment and Analgesic Management
    5 Topics
    |
    1 Quiz
  75. Sedation and Agitation Management
    5 Topics
    |
    1 Quiz
  76. Delirium Prevention and Treatment
    5 Topics
    |
    1 Quiz
  77. Sleep Disturbance Management
    5 Topics
    |
    1 Quiz
  78. Immobility and Early Mobilization
    5 Topics
    |
    1 Quiz
  79. Oncologic Emergencies
    5 Topics
    |
    1 Quiz
  80. End-of-Life Care & Palliative Care
    Goals of Care & Advance Care Planning
    5 Topics
    |
    1 Quiz
  81. Pain Management & Opioid Therapy
    5 Topics
    |
    1 Quiz
  82. Dyspnea & Respiratory Symptom Management
    5 Topics
    |
    1 Quiz
  83. Sedation & Palliative Sedation
    5 Topics
    |
    1 Quiz
  84. Delirium Agitation & Anxiety
    5 Topics
    |
    1 Quiz
  85. Nausea, Vomiting & Gastrointestinal Symptoms
    5 Topics
    |
    1 Quiz
  86. Management of Secretions (Death Rattle)
    5 Topics
    |
    1 Quiz
  87. Fluids, Electrolytes, and Nutrition Management
    Intravenous Fluid Therapy and Resuscitation
    5 Topics
    |
    1 Quiz
  88. Acid–Base Disorders
    5 Topics
    |
    1 Quiz
  89. Sodium Homeostasis and Dysnatremias
    5 Topics
    |
    1 Quiz
  90. Potassium Disorders
    5 Topics
    |
    1 Quiz
  91. Calcium and Magnesium Abnormalities
    5 Topics
    |
    1 Quiz
  92. Phosphate and Trace Electrolyte Management
    5 Topics
    |
    1 Quiz
  93. Enteral Nutrition Support
    5 Topics
    |
    1 Quiz
  94. Parenteral Nutrition Support
    5 Topics
    |
    1 Quiz
  95. Refeeding Syndrome and Specialized Nutrition
    5 Topics
    |
    1 Quiz
  96. Trauma and Burns
    Initial Resuscitation and Fluid Management in Trauma
    5 Topics
    |
    1 Quiz
  97. Hemorrhagic Shock, Massive Transfusion, and Trauma‐Induced Coagulopathy
    5 Topics
    |
    1 Quiz
  98. Burns Pharmacotherapy
    5 Topics
    |
    1 Quiz
  99. Burn Wound Care
    5 Topics
    |
    1 Quiz
  100. Open Fracture Antibiotics
    5 Topics
    |
    1 Quiz

Participants 432

  • Allison Clemens
  • April
  • ababaabhay
  • achoi2392
  • adhoward1
Show more
Lesson 65, Topic 2
In Progress

Diagnostic and Classification Criteria in Endocarditis

Lesson Progress
0% Complete
Diagnostic and Classification Criteria in Endocarditis

Diagnostic and Classification Criteria in Endocarditis

Objectives Icon A clipboard with a checkmark, symbolizing learning objectives.

Learning Objective

After completing this chapter, you will be able to apply the Modified Duke Criteria, interpret key diagnostic tests, and use classification systems to accurately diagnose, risk-stratify, and guide the initial management of patients with infective endocarditis.

1. Modified Duke Criteria

The Modified Duke Criteria represent the cornerstone of diagnosis for infective endocarditis (IE), integrating clinical, microbiologic, and echocardiographic findings into a standardized framework. This system allows for a consistent approach to classifying patients.

Major Criteria

  • Blood Cultures: Two positive blood cultures for typical IE organisms (e.g., viridans group streptococci, Streptococcus bovis group, HACEK group, Staphylococcus aureus, or community-acquired enterococci) drawn from separate sites at least one hour apart.
  • Evidence of Endocardial Involvement: Echocardiographic findings such as an oscillating intracardiac mass (vegetation), abscess, new partial dehiscence of a prosthetic valve, or new-onset valvular regurgitation.

Minor Criteria

  • Predisposition: A known predisposing heart condition or history of injection drug use.
  • Fever: Temperature greater than 38°C (100.4°F).
  • Vascular Phenomena: Major arterial emboli, septic pulmonary infarcts, mycotic aneurysm, or Janeway lesions.
  • Immunologic Phenomena: Glomerulonephritis, Osler nodes, Roth spots, or a positive rheumatoid factor.
  • Microbiologic Evidence: A positive blood culture that does not meet the major criterion.

Diagnostic Classification

Diagnostic Classification using Modified Duke Criteria
Classification Required Criteria
Definite IE 2 Major Criteria OR 1 Major + 3 Minor Criteria OR 5 Minor Criteria
Possible IE 1 Major + 1 Minor Criterion OR 3 Minor Criteria
Rejected IE Does not meet the criteria for Definite or Possible IE, or an alternative diagnosis is confirmed.
Pearl Icon A lightbulb icon, symbolizing a clinical pearl. Clinical Pearl: Enhancing Diagnostic Sensitivity +

Modern guidelines have expanded the major criteria to enhance sensitivity. Including serology for fastidious organisms (e.g., Coxiella burnetii phase I IgG ≥1:800) or identifying new-onset prosthetic valve endocarditis via advanced imaging (like PET/CT) can upgrade a “possible” case to “definite.” Remember that up to 30% of true IE cases may not meet “definite” criteria initially, so a high index of clinical suspicion is crucial, especially when initial tests are negative.

2. Microbiologic Diagnostics

Prompt and accurate identification of the causative pathogen is critical for directing antimicrobial therapy and improving outcomes. Best practices in sample collection are paramount.

Blood Culture Best Practices

  • Obtain at least three sets of blood cultures from separate venipuncture sites.
  • The first and last draws should be separated by at least one hour to demonstrate continuous bacteremia.
  • Cultures should ideally be drawn before initiating antibiotic therapy, if the patient is hemodynamically stable.
  • Utilize rapid identification technologies like MALDI-TOF MS to accelerate organism identification and subsequent susceptibility testing.

Navigating Culture-Negative Endocarditis

When blood cultures are persistently negative despite high clinical suspicion, adjunctive testing is necessary:

  • Serologic Assays: Test for fastidious organisms that do not grow in standard culture media, such as Bartonella spp., Brucella spp., and Coxiella burnetii.
  • Molecular Testing: Polymerase chain reaction (PCR) performed on excised valve tissue or, in some cases, whole blood can identify pathogen DNA. While not formally part of the Duke criteria, it is a powerful adjunctive tool.
Pearl Icon A lightbulb icon, symbolizing a clinical pearl. Clinical Pearl: The Stability-Culture Dilemma +

The decision to delay antibiotics to obtain optimal cultures is a critical judgment call. In a hemodynamically stable patient, waiting an hour or more to collect all culture sets significantly increases diagnostic yield. However, in a patient with sepsis or shock, immediate administration of broad-spectrum antibiotics after drawing the initial cultures is a life-saving priority. The diagnostic benefit never outweighs the risk of clinical decompensation.

3. Echocardiographic Imaging

Echocardiography is the imaging cornerstone for diagnosing IE and its complications. The choice between transthoracic (TTE) and transesophageal (TEE) approaches depends on patient factors and the specific clinical question.

Transthoracic vs. Transesophageal Echocardiography

Comparison of TTE and TEE in Infective Endocarditis
Feature Transthoracic Echo (TTE) Transesophageal Echo (TEE)
Role First-line, noninvasive screening Problem-solving, high-risk cases
Sensitivity (Native Valve) 50–70% >90%
Sensitivity (Prosthetic Valve) 40–50% (often limited by artifact) >90%
Indications Initial evaluation in most patients Negative TTE with high suspicion, all prosthetic valves, suspected complications (abscess, perforation)
Limitations Poor acoustic windows (obesity, COPD), mechanical ventilation Invasive, requires sedation, contraindications (esophageal disease)

Advanced Echocardiographic Techniques

3D Echocardiography, particularly with TEE, provides superior anatomical detail of vegetation size, shape, and mobility, which is invaluable for surgical planning. Cardiac CT and MRI serve as important adjuncts when echo is inconclusive, especially for evaluating perivalvular extension of infection into surrounding tissues.

Pearl Icon A lightbulb icon, symbolizing a clinical pearl. Clinical Pearl: When to Escalate to TEE +

A negative TTE does not rule out endocarditis, especially in high-risk scenarios. If clinical suspicion remains high after a non-diagnostic TTE, proceed to TEE without delay. A reasonable timeframe is within 3-5 days for stable patients, but it should be performed immediately if the patient develops new heart failure, heart block, or embolic events, as these suggest a developing complication that TEE is best suited to detect.

4. Advanced Imaging Adjuncts

In complex cases, particularly involving prosthetic valves (PVE) or cardiac implantable electronic devices (CIEDs), echocardiography may be inconclusive. Nuclear imaging has emerged as a critical tool to resolve diagnostic uncertainty.

18F-FDG PET/CT and Leukocyte SPECT/CT

These functional imaging modalities detect metabolic activity (inflammation) associated with infection. Their primary role is in suspected PVE or CIED infections where echo findings are equivocal. Focal radiotracer uptake around a prosthetic valve or device lead is a strong indicator of infection.

Diagnostic Imaging Algorithm for Endocarditis A flowchart showing the decision-making process for imaging in suspected endocarditis. It starts with clinical suspicion, moves to TTE, then to TEE if needed. For prosthetic valves with inconclusive TEE, it recommends PET/CT. High Clinical Suspicion of IE Perform TTE Positive? Definite IE Yes No / Inconclusive Perform TEE Positive? Definite IE Inconclusive & PVE/CIED? Perform 18F-FDG PET/CT Yes
Figure 1: Simplified Imaging Algorithm in Suspected Endocarditis. This demonstrates the sequential use of imaging, starting with TTE and escalating to TEE and then advanced modalities like PET/CT for complex cases such as prosthetic valve endocarditis (PVE).
Pearl Icon A lightbulb icon, symbolizing a clinical pearl. Clinical Pearl: Patient Prep for PET/CT is Key +

The utility of 18F-FDG PET/CT is highly dependent on suppressing physiologic glucose uptake by the heart muscle, which can otherwise mask or mimic signs of infection. Strict patient preparation is mandatory and typically includes a prolonged fasting period (at least 6 hours) and a high-fat, low-carbohydrate diet for 24-48 hours prior to the scan. Failure to adhere to these protocols is a common cause of false-positive or uninterpretable results.

5. Classification and Risk Stratification

Beyond diagnosis, classifying IE and stratifying risk are essential for determining the urgency of management, particularly the need for surgical intervention.

Key Classification Schemes

  • Native vs. Prosthetic Valve IE (PVE): PVE carries a higher mortality and complication rate, often caused by more virulent organisms like staphylococci. Early PVE (<1 year post-op) is typically nosocomial, while late PVE resembles native valve IE.
  • Left-Sided vs. Right-Sided IE: Left-sided (mitral, aortic) IE poses a risk of systemic embolization (e.g., stroke) and severe heart failure. Right-sided (tricuspid) IE is classic in persons who inject drugs and typically presents with septic pulmonary emboli.

Predicting Embolic Risk and Mortality

Certain features significantly increase the risk of embolization and poor outcomes. Formal scoring systems can help quantify this risk and facilitate multidisciplinary discussions about the timing of surgery.

Key Predictors and Formal Risk Scores in IE
Risk Factor / Score Components / Interpretation
High Embolic Risk Predictors Vegetation size >10 mm, high mobility, involvement of the anterior mitral leaflet, and infection with S. aureus or Candida spp.
PALSUSE Score Predicts 6-month mortality. Acronym for: Prosthesis, Age, Large vegetations, Surgery urgency, Uncontrolled infection, Staphylococcus, Emboli.
STS-IE Score Society of Thoracic Surgeons score that estimates in-hospital or 30-day operative mortality for patients undergoing surgery for IE. Uses numerous clinical and echo variables.
Pearl Icon A lightbulb icon, symbolizing a clinical pearl. Clinical Pearl: Early Surgical Consultation is Not a Commitment to Operate +

For any patient with high-risk features—such as large vegetations (>10 mm), signs of heart failure, or perivalvular extension—an early surgical consultation is mandatory. This does not commit the patient to an operation but rather engages the multidisciplinary Heart Team early. This allows for proactive planning so that if the patient deteriorates, a well-considered surgical plan can be executed urgently rather than emergently, which is associated with better outcomes.

References

  1. Li JS, Sexton DJ, Mick N, et al. Proposed modifications to the Duke criteria for the diagnosis of infective endocarditis. Clin Infect Dis. 2000;30(4):633–638.
  2. Baddour LM, Wilson WR, Bayer AS, et al. Infective endocarditis in adults: diagnosis, antimicrobial therapy, and management of complications: a scientific statement from the AHA. Circulation. 2015;132(15):1435–1486.
  3. Heidenreich PA, Masoudi FA, Maini B, et al. Echocardiography in patients with suspected endocarditis: a cost-effectiveness analysis. Am J Med. 1999;107(3):198–208.
  4. Habib G, Derumeaux G, Avierinos JF, et al. Value and limitations of the Duke criteria for the diagnosis of infective endocarditis. J Am Coll Cardiol. 1999;33(7):2023–2029.
  5. Habib G, Lancellotti P, Antunes MJ, et al. 2015 ESC guidelines for the management of infective endocarditis. Eur Heart J. 2015;36(44):3075–3128.
  6. Kang DH, Kim YJ, Kim SH, et al. Early surgery versus conventional treatment for infective endocarditis. N Engl J Med. 2012;366(26):2466–2473.
  7. Iversen K, Ihlemann N, Gill SU, et al. Partial oral versus intravenous antibiotic treatment of endocarditis. N Engl J Med. 2019;380(5):415–424.