Back to Course

2025 PACUPrep BCCCP Preparatory Course

0% Complete
0/0 Steps
  1. Pulmonary

    ARDS
    4 Topics
    |
    1 Quiz
  2. Asthma Exacerbation
    4 Topics
    |
    1 Quiz
  3. COPD Exacerbation
    4 Topics
    |
    1 Quiz
  4. Cystic Fibrosis
    6 Topics
    |
    1 Quiz
  5. Drug-Induced Pulmonary Diseases
    3 Topics
    |
    1 Quiz
  6. Mechanical Ventilation Pharmacotherapy
    5 Topics
    |
    1 Quiz
  7. Pleural Disorders
    5 Topics
    |
    1 Quiz
  8. Pulmonary Hypertension (Acute and Chronic severe pulmonary hypertension)
    5 Topics
    |
    1 Quiz
  9. Cardiology
    Acute Coronary Syndromes
    6 Topics
    |
    1 Quiz
  10. Atrial Fibrillation and Flutter
    6 Topics
    |
    1 Quiz
  11. Cardiogenic Shock
    4 Topics
    |
    1 Quiz
  12. Heart Failure
    7 Topics
    |
    1 Quiz
  13. Hypertensive Crises
    5 Topics
    |
    1 Quiz
  14. Ventricular Arrhythmias and Sudden Cardiac Death Prevention
    5 Topics
    |
    1 Quiz
  15. NEPHROLOGY
    Acute Kidney Injury (AKI)
    5 Topics
    |
    1 Quiz
  16. Contrast‐Induced Nephropathy
    5 Topics
    |
    1 Quiz
  17. Drug‐Induced Kidney Diseases
    5 Topics
    |
    1 Quiz
  18. Rhabdomyolysis
    5 Topics
    |
    1 Quiz
  19. Syndrome of Inappropriate Antidiuretic Hormone (SIADH)
    5 Topics
    |
    1 Quiz
  20. Renal Replacement Therapies (RRT)
    5 Topics
    |
    1 Quiz
  21. Neurology
    Status Epilepticus
    5 Topics
    |
    1 Quiz
  22. Acute Ischemic Stroke
    5 Topics
    |
    1 Quiz
  23. Subarachnoid Hemorrhage
    5 Topics
    |
    1 Quiz
  24. Spontaneous Intracerebral Hemorrhage
    5 Topics
    |
    1 Quiz
  25. Neuromonitoring Techniques
    5 Topics
    |
    1 Quiz
  26. Gastroenterology
    Acute Upper Gastrointestinal Bleeding
    5 Topics
    |
    1 Quiz
  27. Acute Lower Gastrointestinal Bleeding
    5 Topics
    |
    1 Quiz
  28. Acute Pancreatitis
    5 Topics
    |
    1 Quiz
  29. Enterocutaneous and Enteroatmospheric Fistulas
    5 Topics
    |
    1 Quiz
  30. Ileus and Acute Intestinal Pseudo-obstruction
    5 Topics
    |
    1 Quiz
  31. Abdominal Compartment Syndrome
    5 Topics
    |
    1 Quiz
  32. Hepatology
    Acute Liver Failure
    5 Topics
    |
    1 Quiz
  33. Portal Hypertension & Variceal Hemorrhage
    5 Topics
    |
    1 Quiz
  34. Hepatic Encephalopathy
    5 Topics
    |
    1 Quiz
  35. Ascites & Spontaneous Bacterial Peritonitis
    5 Topics
    |
    1 Quiz
  36. Hepatorenal Syndrome
    5 Topics
    |
    1 Quiz
  37. Drug-Induced Liver Injury
    5 Topics
    |
    1 Quiz
  38. Dermatology
    Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis
    5 Topics
    |
    1 Quiz
  39. Erythema multiforme
    5 Topics
    |
    1 Quiz
  40. Drug Reaction (or Rash) with Eosinophilia and Systemic Symptoms (DRESS)
    5 Topics
    |
    1 Quiz
  41. Immunology
    Transplant Immunology & Acute Rejection
    5 Topics
    |
    1 Quiz
  42. Solid Organ & Hematopoietic Transplant Pharmacotherapy
    5 Topics
    |
    1 Quiz
  43. Graft-Versus-Host Disease (GVHD)
    5 Topics
    |
    1 Quiz
  44. Hypersensitivity Reactions & Desensitization
    5 Topics
    |
    1 Quiz
  45. Biologic Immunotherapies & Cytokine Release Syndrome
    5 Topics
    |
    1 Quiz
  46. Endocrinology
    Relative Adrenal Insufficiency and Stress-Dose Steroid Therapy
    5 Topics
    |
    1 Quiz
  47. Hyperglycemic Crisis (DKA & HHS)
    5 Topics
    |
    1 Quiz
  48. Glycemic Control in the ICU
    5 Topics
    |
    1 Quiz
  49. Thyroid Emergencies: Thyroid Storm & Myxedema Coma
    5 Topics
    |
    1 Quiz
  50. Hematology
    Acute Venous Thromboembolism
    5 Topics
    |
    1 Quiz
  51. Drug-Induced Thrombocytopenia
    5 Topics
    |
    1 Quiz
  52. Anemia of Critical Illness
    5 Topics
    |
    1 Quiz
  53. Drug-Induced Hematologic Disorders
    5 Topics
    |
    1 Quiz
  54. Sickle Cell Crisis in the ICU
    5 Topics
    |
    1 Quiz
  55. Methemoglobinemia & Dyshemoglobinemias
    5 Topics
    |
    1 Quiz
  56. Toxicology
    Toxidrome Recognition and Initial Management
    5 Topics
    |
    1 Quiz
  57. Management of Acute Overdoses – Non-Cardiovascular Agents
    5 Topics
    |
    1 Quiz
  58. Management of Acute Overdoses – Cardiovascular Agents
    5 Topics
    |
    1 Quiz
  59. Toxic Alcohols and Small-Molecule Poisons
    5 Topics
    |
    1 Quiz
  60. Antidotes and Gastrointestinal Decontamination
    5 Topics
    |
    1 Quiz
  61. Extracorporeal Removal Techniques
    5 Topics
    |
    1 Quiz
  62. Withdrawal Syndromes in the ICU
    5 Topics
    |
    1 Quiz
  63. Infectious Diseases
    Sepsis and Septic Shock
    5 Topics
    |
    1 Quiz
  64. Pneumonia (CAP, HAP, VAP)
    5 Topics
    |
    1 Quiz
  65. Endocarditis
    5 Topics
    |
    1 Quiz
  66. CNS Infections
    5 Topics
    |
    1 Quiz
  67. Complicated Intra-abdominal Infections
    5 Topics
    |
    1 Quiz
  68. Antibiotic Stewardship & PK/PD
    5 Topics
    |
    1 Quiz
  69. Clostridioides difficile Infection
    5 Topics
    |
    1 Quiz
  70. Febrile Neutropenia & Immunocompromised Hosts
    5 Topics
    |
    1 Quiz
  71. Skin & Soft-Tissue Infections / Acute Osteomyelitis
    5 Topics
    |
    1 Quiz
  72. Urinary Tract and Catheter-related Infections
    5 Topics
    |
    1 Quiz
  73. Pandemic & Emerging Viral Infections
    5 Topics
    |
    1 Quiz
  74. Supportive Care (Pain, Agitation, Delirium, Immobility, Sleep)
    Pain Assessment and Analgesic Management
    5 Topics
    |
    1 Quiz
  75. Sedation and Agitation Management
    5 Topics
    |
    1 Quiz
  76. Delirium Prevention and Treatment
    5 Topics
    |
    1 Quiz
  77. Sleep Disturbance Management
    5 Topics
    |
    1 Quiz
  78. Immobility and Early Mobilization
    5 Topics
    |
    1 Quiz
  79. Oncologic Emergencies
    5 Topics
    |
    1 Quiz
  80. End-of-Life Care & Palliative Care
    Goals of Care & Advance Care Planning
    5 Topics
    |
    1 Quiz
  81. Pain Management & Opioid Therapy
    5 Topics
    |
    1 Quiz
  82. Dyspnea & Respiratory Symptom Management
    5 Topics
    |
    1 Quiz
  83. Sedation & Palliative Sedation
    5 Topics
    |
    1 Quiz
  84. Delirium Agitation & Anxiety
    5 Topics
    |
    1 Quiz
  85. Nausea, Vomiting & Gastrointestinal Symptoms
    5 Topics
    |
    1 Quiz
  86. Management of Secretions (Death Rattle)
    5 Topics
    |
    1 Quiz
  87. Fluids, Electrolytes, and Nutrition Management
    Intravenous Fluid Therapy and Resuscitation
    5 Topics
    |
    1 Quiz
  88. Acid–Base Disorders
    5 Topics
    |
    1 Quiz
  89. Sodium Homeostasis and Dysnatremias
    5 Topics
    |
    1 Quiz
  90. Potassium Disorders
    5 Topics
    |
    1 Quiz
  91. Calcium and Magnesium Abnormalities
    5 Topics
    |
    1 Quiz
  92. Phosphate and Trace Electrolyte Management
    5 Topics
    |
    1 Quiz
  93. Enteral Nutrition Support
    5 Topics
    |
    1 Quiz
  94. Parenteral Nutrition Support
    5 Topics
    |
    1 Quiz
  95. Refeeding Syndrome and Specialized Nutrition
    5 Topics
    |
    1 Quiz
  96. Trauma and Burns
    Initial Resuscitation and Fluid Management in Trauma
    5 Topics
    |
    1 Quiz
  97. Hemorrhagic Shock, Massive Transfusion, and Trauma‐Induced Coagulopathy
    5 Topics
    |
    1 Quiz
  98. Burns Pharmacotherapy
    5 Topics
    |
    1 Quiz
  99. Burn Wound Care
    5 Topics
    |
    1 Quiz
  100. Open Fracture Antibiotics
    5 Topics
    |
    1 Quiz

Participants 432

  • Allison Clemens
  • April
  • ababaabhay
  • achoi2392
  • adhoward1
Show more
Lesson 61, Topic 2
In Progress

Diagnostic and Classification Criteria for Extracorporeal Intervention

Lesson Progress
0% Complete
Diagnostic and Classification Criteria for Extracorporeal Intervention

Diagnostic and Classification Criteria for Extracorporeal Intervention

Objectives Icon A checkmark inside a circle, symbolizing achieved goals.

Objective

Apply diagnostic and classification criteria to evaluate and triage patients for extracorporeal toxin removal.

1. Clinical Indicators for Extracorporeal Removal

Extracorporeal removal is a critical intervention reserved for life-threatening poisonings that manifest as severe metabolic, cardiac, hemodynamic, or neurologic compromise unresponsive to standard supportive care and antidotal therapy.

A. High Anion-Gap Metabolic Acidosis (HAGMA)

Pathogenesis: The accumulation of unmeasured anions, such as formate in methanol toxicity, glycolate in ethylene glycol poisoning, or organic acids in salicylate overdose, leads to a significant increase in the anion gap (AG).

  • Diagnostic Thresholds: An anion gap >20 mEq/L or an arterial pH <7.25 despite aggressive sodium bicarbonate therapy are strong indicators.
  • Clinical Reasoning: A persistently elevated AG accompanied by ongoing acidemia signifies that endogenous clearance mechanisms are overwhelmed, necessitating extracorporeal removal to correct the metabolic derangement and eliminate the parent toxin and its toxic metabolites.
Pearl Icon A shield with an exclamation mark, indicating a clinical pearl. Clinical Pearl: Non-Closing Anion Gap

An anion gap that fails to close after aggressive bicarbonate administration is a red flag suggesting ongoing generation of toxic metabolites. This finding should prompt early initiation of hemodialysis to prevent irreversible end-organ damage.

B. Refractory Ventricular Arrhythmias and Cardiotoxicity

  • Indications: QRS duration >100 ms, sustained ventricular tachycardia, or severe bradyarrhythmias that are unresponsive to standard antidotes (e.g., sodium bicarbonate, glucagon, high-dose insulin).
  • Common Toxins: Tricyclic antidepressants, digoxin, and severe beta-blocker or calcium-channel blocker overdoses are classic culprits.
  • Rationale: Extracorporeal therapies can rapidly accelerate the removal of the free, unbound toxin from circulation, helping to stabilize myocardial conduction, restore electrical stability, and improve overall hemodynamics.
Pearl IconA shield with an exclamation mark, indicating a clinical pearl. Clinical Pearl: Sodium-Channel Blocker Overdose

In poisonings with sodium-channel blocking agents, consider emergent dialysis if the QRS duration exceeds 120 ms in conjunction with hypotension, despite adequate sodium bicarbonate therapy. This combination signals severe toxicity that may not respond to antidotal therapy alone.

C. Hemodynamic Instability and Neurologic Deterioration

  • Hemodynamic: Persistent hypotension despite adequate fluid resuscitation and high-dose vasopressor support suggests severe toxin-induced vasodilation or myocardial depression. Continuous renal replacement therapy (CRRT) is often preferred in these hemodynamically unstable patients.
  • Neurologic: Coma, refractory seizures, or profound sedation seen in baclofen or barbiturate poisoning may warrant extracorporeal removal. Early intervention can reverse CNS depression and prevent complications of prolonged immobility and mechanical ventilation.
Pearl IconA shield with an exclamation mark, indicating a clinical pearl. Clinical Pearl: Baclofen Toxicity

In patients with baclofen toxicity and concurrent renal impairment, dialysis can be a highly effective intervention to reverse profound sedation that is unresponsive to supportive care, potentially shortening ICU length of stay.

2. Laboratory Evaluation and Toxin-Specific Assays

Quantitative toxin levels, in conjunction with routine chemistries, are essential for guiding the selection of modality, timing of initiation, and duration of extracorporeal therapy.

A. Quantitative Toxin Levels

Common Toxin Thresholds for Extracorporeal Removal
Toxin Indication Thresholds
Salicylate Peak level >100 mg/dL (acute) or >60 mg/dL (chronic) after 6 hours post-ingestion.
Lithium Serum level >5 mmol/L, or >4 mmol/L with significant neurologic symptoms (seizures, altered mental status).
Methanol / Ethylene Glycol Serum level >50 mg/dL, or any level with significant metabolic acidosis or end-organ damage.

Rebound Monitoring: It is crucial to repeat toxin levels 2–4 hours after completing a dialysis session to detect rebound phenomena, where the toxin redistributes from the intracellular to the extracellular compartment.

Pearl IconA shield with an exclamation mark, indicating a clinical pearl. Clinical Pearl: Context is Key

Always interpret salicylate and lithium levels in the context of the patient’s renal function and acid-base status. A mildly elevated level in a patient with acute kidney injury may be more dangerous and warrant dialysis sooner than a higher level in a patient with normal renal function.

B. Routine Chemistries

  • Electrolytes: Hypokalemia and hypomagnesemia can exacerbate cardiotoxicity and arrhythmias from various poisonings. These should be corrected promptly.
  • Renal Function: An elevated serum creatinine indicates impaired endogenous clearance, prolonging the elimination of hydrophilic toxins and influencing their volume of distribution.
  • Acid-Base Status: Serial measurements of bicarbonate and lactate are vital to assess the efficacy of toxin removal and guide the continuation or cessation of therapy.
Pearl IconA shield with an exclamation mark, indicating a clinical pearl. Clinical Pearl: Correct Potassium First

Correcting hypokalemia before initiating dialysis is critical. The rapid shifts in potassium during extracorporeal therapy can precipitate life-threatening arrhythmias if the baseline level is already low.

C. Trends and Dynamic Monitoring

  • Frequency: Repeat toxin assays and key chemistries every 2–4 hours during acute extracorporeal therapy to guide management.
  • Trend Analysis: The closure of the anion gap often correlates well with the clearance of toxins like methanol, ethylene glycol, and salicylates. It can serve as a valuable surrogate marker for determining the duration of therapy.
Pearl IconA shield with an exclamation mark, indicating a clinical pearl. Clinical Pearl: Anion Gap as a Guide

A narrowing anion gap that is trending toward normal levels often precedes clinical improvement and can be a reliable signal that it is safe to consider discontinuing dialysis, even before final toxin levels are available.

3. Severity Classification Tools

Standardized scoring systems augment clinical judgment by objectively quantifying the severity of toxicity, which helps in predicting outcomes and justifying the use of invasive therapies.

A. Poisoning Severity Score (PSS)

The PSS is a simple, rapid tool used for triage and resource allocation. A score of 3 or higher indicates a life-threatening poisoning that likely requires urgent extracorporeal support.

Poisoning Severity Score (PSS) Grades
Grade Description Implication
0NoneNo symptoms or signs related to poisoning.
1MinorMild, transient, and spontaneously resolving symptoms.
2ModeratePronounced or prolonged symptoms; requires treatment.
3SevereSevere or life-threatening symptoms; requires intensive care.
4FatalPoisoning proves fatal.
Pearl IconA shield with an exclamation mark, indicating a clinical pearl. Clinical Pearl: PSS in Mass-Casualty Events

In mass-casualty incidents or resource-limited settings, the PSS is an invaluable tool that expedites the identification of the sickest patients who are most likely to benefit from immediate dialysis or other advanced interventions.

B. APACHE II Score

The APACHE II score integrates 12 physiologic variables, age, and chronic health status to generate a predicted mortality risk. While not specific to toxicology, it is a robust measure of illness severity.

  • Adaptation: An APACHE II score greater than 20 in the context of an acute poisoning correlates with an increased need for intensive interventions, including extracorporeal removal.
Pearl IconA shield with an exclamation mark, indicating a clinical pearl. Clinical Pearl: Limitations of APACHE II

APACHE II may under-predict mortality risk in poisonings where toxin kinetics are rapid and clinical deterioration is swift. Always integrate scoring systems with dynamic clinical and laboratory data.

C. Combined Application in Triage

  • Triggers for Consultation: A PSS ≥3 or an APACHE II score >20 should prompt an immediate nephrology and/or toxicology consultation to discuss the role of extracorporeal therapy.
  • Institutional Protocols: Embedding clear, score-based thresholds into institutional poisoning protocols can help standardize care and minimize delays in initiating life-saving therapies.
Pearl IconA shield with an exclamation mark, indicating a clinical pearl. Clinical Pearl: Scores are Adjuncts

Scoring systems are powerful adjuncts to clinical care, but they are not replacements for sound bedside clinical assessment and shared decision-making.

4. Modality Selection Algorithm

The optimal extracorporeal modality and timing are determined by integrating clinical indicators, laboratory data, severity scores, and specific toxin characteristics.

Extracorporeal Therapy Selection Flowchart A flowchart showing the decision-making process for selecting an extracorporeal therapy for poisoning. It starts with assessing the patient, then checks hemodynamic stability to decide between intermittent hemodialysis (IHD) for stable patients and continuous therapies (CRRT/SLED) for unstable patients, while also considering toxin properties. Patient with Severe Poisoning (PSS ≥3, Severe Acidosis, Organ Failure) Hemodynamically Stable? YES NO CRRT or SLED Gentle solute removal for unstable patients Intermittent HD (IHD) Rapid, efficient clearance for stable patients Consider Toxin Properties • MW <500 Da, Low Vd, Low Protein Binding → Dialysis • High Protein Binding / Large Vd → Consider Hemoperfusion
Figure 1: Modality Selection Algorithm. The choice of extracorporeal therapy is primarily driven by hemodynamic stability. Stable patients are candidates for efficient intermittent hemodialysis (IHD), while unstable patients require gentler continuous therapies like CRRT or SLED. Toxin-specific properties further refine the choice.

A. Integration of Data

  • Hemodynamic Stability: If the patient is stable, intermittent hemodialysis (IHD) is preferred for its efficiency and rapid clearance. If the patient is unstable and requires vasopressors, CRRT or sustained low-efficiency dialysis (SLED) provides gentler solute and fluid removal, improving hemodynamic tolerance.
  • Toxin Characteristics:
    • Toxins with a molecular weight <500 Da, low protein binding (<30%), and a small volume of distribution (<1 L/kg) are readily removed by dialysis.
    • Toxins with high protein binding or a large volume of distribution may be poorly dialyzable and require alternative therapies like hemoperfusion or specialized adsorptive membranes.
Pearl IconA shield with an exclamation mark, indicating a clinical pearl. Clinical Pearl: The Role of SLED

Sustained low-efficiency dialysis (SLED) is an excellent hybrid option that combines much of the solute-clearing efficiency of IHD with the superior hemodynamic tolerance of CRRT. Consider SLED in borderline unstable patients who need effective clearance but may not tolerate conventional IHD.

B. Timing of Initiation

  • Early Initiation: Therapy should be started before peak organ damage occurs. This decision is guided by a combination of rising toxin levels, worsening acid-base status (pH <7.3, AG >20), and high severity scores (PSS ≥3).
  • Rescue Therapy: When initiated after end-organ compromise is already established, extracorporeal removal is considered a rescue therapy and often demands higher intensity and a longer duration of clearance.
Pearl IconA shield with an exclamation mark, indicating a clinical pearl. Clinical Pearl: Methanol Poisoning

In methanol poisoning, do not wait for severe symptoms. Initiate dialysis emergently if pH <7.3 or the anion gap is >20 mEq/L to prevent irreversible visual and neurologic injury from the toxic metabolite, formic acid.

References

  1. Mégarbane B, et al. Management of pharmaceutical and recreational drug poisoning. Ann Intensive Care. 2020;10:157.
  2. Ghannoum M, et al. Extracorporeal treatment in the management of acute poisoning. Semin Dial. 2018;31(6):533-541.
  3. Persson HE, et al. Poisoning Severity Score (PSS). Int J Clin Toxicol. 1998;36(3):205-213.
  4. Tayebati SK, et al. Criteria for initiation of extracorporeal treatments in lithium poisoning. Clin Toxicol. 2019;57(9):723-732.
  5. Kellum JA, et al. Continuous versus intermittent renal replacement therapy: a meta-analysis. Intensive Care Med. 2002;28(1):29-37.
  6. El-Menyar A, et al. Efficacy of four scoring systems in prediction of mortality in acute poisoning. Ther Adv Med Oncol. 2021;13:17588359211049030.