Back to Course

2025 PACUPrep BCCCP Preparatory Course

0% Complete
0/0 Steps
  1. Pulmonary

    ARDS
    4 Topics
    |
    1 Quiz
  2. Asthma Exacerbation
    4 Topics
    |
    1 Quiz
  3. COPD Exacerbation
    4 Topics
    |
    1 Quiz
  4. Cystic Fibrosis
    6 Topics
    |
    1 Quiz
  5. Drug-Induced Pulmonary Diseases
    3 Topics
    |
    1 Quiz
  6. Mechanical Ventilation Pharmacotherapy
    5 Topics
    |
    1 Quiz
  7. Pleural Disorders
    5 Topics
    |
    1 Quiz
  8. Pulmonary Hypertension (Acute and Chronic severe pulmonary hypertension)
    5 Topics
    |
    1 Quiz
  9. Cardiology
    Acute Coronary Syndromes
    6 Topics
    |
    1 Quiz
  10. Atrial Fibrillation and Flutter
    6 Topics
    |
    1 Quiz
  11. Cardiogenic Shock
    4 Topics
    |
    1 Quiz
  12. Heart Failure
    7 Topics
    |
    1 Quiz
  13. Hypertensive Crises
    5 Topics
    |
    1 Quiz
  14. Ventricular Arrhythmias and Sudden Cardiac Death Prevention
    5 Topics
    |
    1 Quiz
  15. NEPHROLOGY
    Acute Kidney Injury (AKI)
    5 Topics
    |
    1 Quiz
  16. Contrast‐Induced Nephropathy
    5 Topics
    |
    1 Quiz
  17. Drug‐Induced Kidney Diseases
    5 Topics
    |
    1 Quiz
  18. Rhabdomyolysis
    5 Topics
    |
    1 Quiz
  19. Syndrome of Inappropriate Antidiuretic Hormone (SIADH)
    5 Topics
    |
    1 Quiz
  20. Renal Replacement Therapies (RRT)
    5 Topics
    |
    1 Quiz
  21. Neurology
    Status Epilepticus
    5 Topics
    |
    1 Quiz
  22. Acute Ischemic Stroke
    5 Topics
    |
    1 Quiz
  23. Subarachnoid Hemorrhage
    5 Topics
    |
    1 Quiz
  24. Spontaneous Intracerebral Hemorrhage
    5 Topics
    |
    1 Quiz
  25. Neuromonitoring Techniques
    5 Topics
    |
    1 Quiz
  26. Gastroenterology
    Acute Upper Gastrointestinal Bleeding
    5 Topics
    |
    1 Quiz
  27. Acute Lower Gastrointestinal Bleeding
    5 Topics
    |
    1 Quiz
  28. Acute Pancreatitis
    5 Topics
    |
    1 Quiz
  29. Enterocutaneous and Enteroatmospheric Fistulas
    5 Topics
    |
    1 Quiz
  30. Ileus and Acute Intestinal Pseudo-obstruction
    5 Topics
    |
    1 Quiz
  31. Abdominal Compartment Syndrome
    5 Topics
    |
    1 Quiz
  32. Hepatology
    Acute Liver Failure
    5 Topics
    |
    1 Quiz
  33. Portal Hypertension & Variceal Hemorrhage
    5 Topics
    |
    1 Quiz
  34. Hepatic Encephalopathy
    5 Topics
    |
    1 Quiz
  35. Ascites & Spontaneous Bacterial Peritonitis
    5 Topics
    |
    1 Quiz
  36. Hepatorenal Syndrome
    5 Topics
    |
    1 Quiz
  37. Drug-Induced Liver Injury
    5 Topics
    |
    1 Quiz
  38. Dermatology
    Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis
    5 Topics
    |
    1 Quiz
  39. Erythema multiforme
    5 Topics
    |
    1 Quiz
  40. Drug Reaction (or Rash) with Eosinophilia and Systemic Symptoms (DRESS)
    5 Topics
    |
    1 Quiz
  41. Immunology
    Transplant Immunology & Acute Rejection
    5 Topics
    |
    1 Quiz
  42. Solid Organ & Hematopoietic Transplant Pharmacotherapy
    5 Topics
    |
    1 Quiz
  43. Graft-Versus-Host Disease (GVHD)
    5 Topics
    |
    1 Quiz
  44. Hypersensitivity Reactions & Desensitization
    5 Topics
    |
    1 Quiz
  45. Biologic Immunotherapies & Cytokine Release Syndrome
    5 Topics
    |
    1 Quiz
  46. Endocrinology
    Relative Adrenal Insufficiency and Stress-Dose Steroid Therapy
    5 Topics
    |
    1 Quiz
  47. Hyperglycemic Crisis (DKA & HHS)
    5 Topics
    |
    1 Quiz
  48. Glycemic Control in the ICU
    5 Topics
    |
    1 Quiz
  49. Thyroid Emergencies: Thyroid Storm & Myxedema Coma
    5 Topics
    |
    1 Quiz
  50. Hematology
    Acute Venous Thromboembolism
    5 Topics
    |
    1 Quiz
  51. Drug-Induced Thrombocytopenia
    5 Topics
    |
    1 Quiz
  52. Anemia of Critical Illness
    5 Topics
    |
    1 Quiz
  53. Drug-Induced Hematologic Disorders
    5 Topics
    |
    1 Quiz
  54. Sickle Cell Crisis in the ICU
    5 Topics
    |
    1 Quiz
  55. Methemoglobinemia & Dyshemoglobinemias
    5 Topics
    |
    1 Quiz
  56. Toxicology
    Toxidrome Recognition and Initial Management
    5 Topics
    |
    1 Quiz
  57. Management of Acute Overdoses – Non-Cardiovascular Agents
    5 Topics
    |
    1 Quiz
  58. Management of Acute Overdoses – Cardiovascular Agents
    5 Topics
    |
    1 Quiz
  59. Toxic Alcohols and Small-Molecule Poisons
    5 Topics
    |
    1 Quiz
  60. Antidotes and Gastrointestinal Decontamination
    5 Topics
    |
    1 Quiz
  61. Extracorporeal Removal Techniques
    5 Topics
    |
    1 Quiz
  62. Withdrawal Syndromes in the ICU
    5 Topics
    |
    1 Quiz
  63. Infectious Diseases
    Sepsis and Septic Shock
    5 Topics
    |
    1 Quiz
  64. Pneumonia (CAP, HAP, VAP)
    5 Topics
    |
    1 Quiz
  65. Endocarditis
    5 Topics
    |
    1 Quiz
  66. CNS Infections
    5 Topics
    |
    1 Quiz
  67. Complicated Intra-abdominal Infections
    5 Topics
    |
    1 Quiz
  68. Antibiotic Stewardship & PK/PD
    5 Topics
    |
    1 Quiz
  69. Clostridioides difficile Infection
    5 Topics
    |
    1 Quiz
  70. Febrile Neutropenia & Immunocompromised Hosts
    5 Topics
    |
    1 Quiz
  71. Skin & Soft-Tissue Infections / Acute Osteomyelitis
    5 Topics
    |
    1 Quiz
  72. Urinary Tract and Catheter-related Infections
    5 Topics
    |
    1 Quiz
  73. Pandemic & Emerging Viral Infections
    5 Topics
    |
    1 Quiz
  74. Supportive Care (Pain, Agitation, Delirium, Immobility, Sleep)
    Pain Assessment and Analgesic Management
    5 Topics
    |
    1 Quiz
  75. Sedation and Agitation Management
    5 Topics
    |
    1 Quiz
  76. Delirium Prevention and Treatment
    5 Topics
    |
    1 Quiz
  77. Sleep Disturbance Management
    5 Topics
    |
    1 Quiz
  78. Immobility and Early Mobilization
    5 Topics
    |
    1 Quiz
  79. Oncologic Emergencies
    5 Topics
    |
    1 Quiz
  80. End-of-Life Care & Palliative Care
    Goals of Care & Advance Care Planning
    5 Topics
    |
    1 Quiz
  81. Pain Management & Opioid Therapy
    5 Topics
    |
    1 Quiz
  82. Dyspnea & Respiratory Symptom Management
    5 Topics
    |
    1 Quiz
  83. Sedation & Palliative Sedation
    5 Topics
    |
    1 Quiz
  84. Delirium Agitation & Anxiety
    5 Topics
    |
    1 Quiz
  85. Nausea, Vomiting & Gastrointestinal Symptoms
    5 Topics
    |
    1 Quiz
  86. Management of Secretions (Death Rattle)
    5 Topics
    |
    1 Quiz
  87. Fluids, Electrolytes, and Nutrition Management
    Intravenous Fluid Therapy and Resuscitation
    5 Topics
    |
    1 Quiz
  88. Acid–Base Disorders
    5 Topics
    |
    1 Quiz
  89. Sodium Homeostasis and Dysnatremias
    5 Topics
    |
    1 Quiz
  90. Potassium Disorders
    5 Topics
    |
    1 Quiz
  91. Calcium and Magnesium Abnormalities
    5 Topics
    |
    1 Quiz
  92. Phosphate and Trace Electrolyte Management
    5 Topics
    |
    1 Quiz
  93. Enteral Nutrition Support
    5 Topics
    |
    1 Quiz
  94. Parenteral Nutrition Support
    5 Topics
    |
    1 Quiz
  95. Refeeding Syndrome and Specialized Nutrition
    5 Topics
    |
    1 Quiz
  96. Trauma and Burns
    Initial Resuscitation and Fluid Management in Trauma
    5 Topics
    |
    1 Quiz
  97. Hemorrhagic Shock, Massive Transfusion, and Trauma‐Induced Coagulopathy
    5 Topics
    |
    1 Quiz
  98. Burns Pharmacotherapy
    5 Topics
    |
    1 Quiz
  99. Burn Wound Care
    5 Topics
    |
    1 Quiz
  100. Open Fracture Antibiotics
    5 Topics
    |
    1 Quiz

Participants 432

  • Allison Clemens
  • April
  • ababaabhay
  • achoi2392
  • adhoward1
Show more
Lesson 18, Topic 4
In Progress

Critical Care Management of Rhabdomyolysis

Lesson Progress
0% Complete
Supportive Care and Monitoring in Severe Rhabdomyolysis

Supportive Care and Monitoring in Severe Rhabdomyolysis

Lesson Objective Icon A crosshair target, symbolizing a key objective.

Lesson Objective

Recommend appropriate supportive care and monitoring to manage complications associated with rhabdomyolysis and its treatment.

1. Introduction to Supportive Care in Rhabdomyolysis

Severe rhabdomyolysis releases myoglobin and electrolytes, precipitating a cascade of complications including acute kidney injury (AKI), life-threatening arrhythmias, respiratory failure, and systemic inflammatory response syndrome (SIRS). The primary goal of supportive care is to interrupt this cascade through early, aggressive interventions that prevent irreversible organ damage and create an optimal physiologic environment for recovery.

Pathophysiologic Drivers of Complications:

  • Cellular Necrosis: Massive muscle cell breakdown releases myoglobin, potassium (K⁺), and phosphate (PO₄³⁻) into the circulation, overwhelming the body’s homeostatic mechanisms.
  • Acute Kidney Injury (AKI): Myoglobin causes direct oxidative injury to renal tubules and combines with Tamm-Horsfall proteins to form intratubular casts, leading to obstruction and acute tubular necrosis.
  • Fluid Shifts: Damaged muscle tissue sequesters large volumes of fluid from the intravascular space, leading to profound hypovolemia. Conversely, aggressive resuscitation can lead to iatrogenic fluid overload and compartment syndromes.
Pearl Icon A shield with an exclamation mark, indicating a clinical pearl. Clinical Pearl: The Pharmacist’s Role

Clinical pharmacists are integral to the rhabdomyolysis care team. They guide fluid selection and titration, perform critical dose adjustments for renal dysfunction, and lead monitoring efforts for drug-related complications, significantly reducing morbidity in the ICU.

2. Respiratory Support: Mechanical Ventilation

Mechanical ventilation may be required for patients who develop acute respiratory distress syndrome (ARDS) from fluid overload, experience respiratory muscle fatigue, or have refractory metabolic acidosis.

Indications for Mechanical Ventilation:

  • Hypoxemia (ARDS): PaO₂/FiO₂ ratio ≤200, or new bilateral infiltrates on imaging consistent with pulmonary edema.
  • Respiratory Muscle Fatigue: Sustained respiratory rate >30 breaths/minute with a rising PaCO₂, indicating impending respiratory collapse.
  • Refractory Acidosis: Severe metabolic acidosis (pH < 7.2) where mechanical ventilation can help compensate by controlling PaCO₂.

Ventilator and Sedation Strategy

A lung-protective strategy is paramount. This involves low tidal volumes (6 mL/kg of predicted body weight) and maintaining plateau pressures below 30 cm H₂O. Sedation and analgesia must be carefully selected and titrated, especially in the setting of AKI.

Pharmacologic Adjuncts to Mechanical Ventilation in Rhabdomyolysis-Associated AKI
Agent Class Drug & Dose Key Considerations in AKI
Sedation Propofol: 5–50 µg/kg/min Monitor for hypotension and hypertriglyceridemia. No renal dose adjustment needed.
Sedation Midazolam: 0.5–5 mg/h Active metabolites accumulate in renal failure, prolonging sedation. Use with caution.
Sedation Dexmedetomidine: 0.2–1.5 µg/kg/h Risk of bradycardia. Does not cause respiratory depression. No renal dose adjustment.
Analgesia Fentanyl: 25–200 µg/h Preferred agent in AKI due to inactive metabolites.
Analgesia Morphine Active glucuronide metabolites accumulate, leading to neurotoxicity and prolonged effects. Avoid if possible.
Neuromuscular Blockade Cisatracurium: 1–3 µg/kg/min Metabolized by Hoffman elimination (independent of organ function). Drug of choice in AKI.
Pearl Icon A shield with an exclamation mark, indicating a clinical pearl. Clinical Pearl: Neuromuscular Blockade in AKI

When neuromuscular blockade is required for ventilator synchrony or severe ARDS, cisatracurium is the preferred agent in patients with AKI. Its unique metabolism via Hoffman elimination is independent of renal or hepatic function, preventing drug accumulation and prolonged paralysis that can occur with other agents like vecuronium or rocuronium.

3. Hemodynamic Support

The goal of hemodynamic support is to maintain a mean arterial pressure (MAP) sufficient for end-organ perfusion (typically ≥65 mm Hg) without exacerbating fluid overload, pulmonary edema, or compartment syndrome.

Volume Status Assessment

Dynamic assessments of fluid responsiveness are superior to static measures like central venous pressure (CVP). Recommended techniques include:

  • Passive leg raise (PLR) maneuver
  • Pulse pressure variation (PPV) or stroke volume variation (SVV) in mechanically ventilated patients
  • Bedside ultrasound to assess inferior vena cava (IVC) diameter and collapsibility

Fluid and Vasopressor Management

  • Fluid Titration: Use isotonic crystalloids (e.g., Lactated Ringer’s or Normal Saline), titrating to a urine output of 1–3 mL/kg/h (not to exceed 300 mL/h). Reassess fluid status frequently, monitoring for signs of overload like peripheral edema or rising intra-abdominal pressure.
  • Norepinephrine: The first-line vasopressor. Start at 0.05–0.1 µg/kg/min and titrate to maintain MAP ≥ 65 mm Hg. Monitor for tachyarrhythmias.
  • Vasopressin: An adjunctive agent (0.03 U/min) for patients requiring high doses of norepinephrine. Monitor for signs of peripheral or digital ischemia.
  • Phenylephrine: A pure α₁-agonist useful in patients with severe tachyarrhythmias on norepinephrine, but it may reduce cardiac output.
Controversy Icon A chat bubble with a question mark, indicating a point of controversy or debate. Controversy: Vasopressin for Renal Perfusion

While vasopressin causes efferent arteriole constriction in the glomerulus, which theoretically could improve glomerular filtration rate, clinical evidence demonstrating a clear benefit on renal outcomes in shock is lacking. Its primary role remains as a catecholamine-sparing agent to reduce the dose and side effects of norepinephrine, not as a direct renal-protective therapy.

4. Prevention of ICU-Related Complications

Critically ill patients are at high risk for venous thromboembolism (VTE), stress-related mucosal bleeding, and nosocomial infections. Prophylactic measures are a cornerstone of supportive care.

Prophylaxis Strategies:

  • VTE Prophylaxis:
    • Pharmacologic: Unfractionated heparin (UFH) 5,000 units SC every 8–12 hours or low-molecular-weight heparin (LMWH) like enoxaparin 40 mg SC daily.
    • Dose Adjustment: Enoxaparin requires dose reduction (e.g., to 30 mg daily) for CrCl < 30 mL/min. UFH is often preferred in severe AKI.
    • Mechanical: Intermittent pneumatic compression (IPC) devices are used when anticoagulation is contraindicated.
  • Stress Ulcer Prophylaxis (SUP):
    • Agents: Proton pump inhibitors (e.g., pantoprazole 40 mg IV daily) or H2-receptor antagonists (e.g., famotidine).
    • Risk vs. Benefit: The need for SUP should be reassessed daily, as acid suppression is associated with an increased risk of C. difficile infection and pneumonia.
  • Infection Prevention:
    • Bundled Care: Strict adherence to central line and ventilator-associated pneumonia (VAP) bundles is critical. This includes hand hygiene, chlorhexidine bathing, and daily sedation vacations.
    • Antibiotic Stewardship: Prophylactic antibiotics are not recommended. When infections are treated, therapy should be de-escalated promptly based on culture data.
Pearl IconA shield with an exclamation mark, indicating a clinical pearl. Clinical Pearl: Pharmacist-Led Audits

Pharmacists play a key leadership role in ensuring patient safety by conducting real-time audits of prophylaxis adherence and antibiotic use. This active surveillance and feedback to the medical team improves compliance with evidence-based protocols and enhances patient outcomes.

5. Management of Iatrogenic Complications

The very therapies used to treat rhabdomyolysis can cause their own complications. Anticipating and managing fluid overload, electrolyte disturbances, and drug-induced nephrotoxicity is essential.

Common Iatrogenic Issues:

  • Fluid Overload: If diuretics are needed, start with a bolus of furosemide (20–40 mg IV). If the response is poor, consider a continuous infusion (5–20 mg/h). Refractory fluid overload is a primary indication for renal replacement therapy (RRT).
  • Electrolyte Disturbances:
    • Hyperkalemia: A medical emergency requiring a three-pronged approach (See Figure 1).
    • Hypocalcemia: Often occurs as calcium complexes with released phosphate. Treatment (calcium gluconate 1 g IV) is reserved for symptomatic patients (e.g., tetany, arrhythmias) to avoid later rebound hypercalcemia.
    • Hyperphosphatemia: Managed with phosphate binders like sevelamer (800 mg TID with meals). Avoid calcium-based binders if there is concurrent hypercalcemia.
  • Nephrotoxin Avoidance: Systematically review the patient’s medication list to discontinue or adjust potential nephrotoxins, such as NSAIDs and certain antibiotics (e.g., aminoglycosides, vancomycin). If iodinated contrast is necessary, use the lowest possible dose with pre- and post-procedure hydration.
Figure 1. Hyperkalemia Management Algorithm. Treatment is a rapid, multi-step process: 1) Stabilize the cardiac membrane, 2) Shift potassium into cells, and 3) Eliminate potassium from the body. Steps 2 and 3 should be initiated concurrently.
Pearl IconA shield with an exclamation mark, indicating a clinical pearl. Clinical Pearl: Pharmacokinetics in AKI

Acute kidney injury profoundly alters pharmacokinetics. The volume of distribution (Vd) often increases due to fluid shifts, while clearance decreases. This necessitates careful dose adjustments for nearly all critical care medications, including vasoactive agents, sedatives, and antimicrobials, to avoid toxicity and ensure efficacy.

6. Multidisciplinary Goals-of-Care Conversations

In cases of severe rhabdomyolysis with multi-organ failure, it is crucial to initiate early and repeated goals-of-care discussions. This process of shared decision-making ensures that the intensity of life-sustaining treatments aligns with the patient’s values, preferences, and prognosis.

Triggers and Team Roles:

  • When to Initiate: Discussions should be triggered by objective markers of poor prognosis (e.g., a high McMahon Score ≥ 6), refractory multi-organ failure, or before initiating highly invasive therapies like RRT.
  • Multidisciplinary Team: The conversation should involve the intensivist, nephrologist, and palliative care specialists to discuss prognosis. The bedside nurse provides insight into the patient’s daily experience, and the pharmacist can advise on the feasibility and burden of the medication regimen.
  • Communication Frameworks: Using structured communication tools like SBAR (Situation, Background, Assessment, Recommendation) or VALUE (Value family statements, Acknowledge emotions, Listen, Understand the patient as a person, Elicit questions) can facilitate a more effective and empathetic conversation. All decisions, including advanced directives and code status, must be clearly documented.
Pearl IconA shield with an exclamation mark, indicating a clinical pearl. Clinical Pearl: Benefits of Structured Meetings

Proactively scheduling structured goals-of-care meetings has been shown to reduce the use of non-beneficial interventions, decrease family and clinician distress, and improve overall satisfaction with care, even when the outcome is poor.

7. Monitoring and Quality Metrics

Standardized surveillance of key physiologic parameters, laboratory values, and adherence to safety protocols allows for timely therapy adjustments and drives quality improvement.

Key Monitoring Domains:

  • Hemodynamics: Continuous monitoring of MAP and heart rate. Use of dynamic indices (PLR, PPV) to guide fluid therapy.
  • Respiratory Status: Frequent checks of ventilator settings (tidal volume, PEEP, plateau pressure), sedation levels (Richmond Agitation-Sedation Scale, RASS), and neuromuscular blockade (Train-of-Four, TOF).
  • Fluid Balance: Strict intake and output charting, daily weights, and regular assessment for peripheral or pulmonary edema.
  • Laboratory Values: Serial measurements of CK (to trend muscle injury), BUN/creatinine (for renal function), electrolytes (especially K⁺, Ca²⁺, PO₄³⁻), and arterial blood gas (ABG) every 4–6 hours initially.
  • Prophylaxis and Safety Metrics: Tracking institutional rates of VTE, stress ulcer bleeding, VAP, and central line-associated bloodstream infections (CLABSI) to identify areas for improvement.
Pearl IconA shield with an exclamation mark, indicating a clinical pearl. Clinical Pearl: The ICU Dashboard

Displaying key patient metrics on a centralized ICU dashboard or within the electronic health record can provide at-a-glance situational awareness. This can be configured to trigger real-time alerts for critical value changes or protocol deviations, prompting clinicians to escalate or de-escalate therapy in a timely manner.

References

  1. Kodadek L, Carmichael H, Seshadri A, et al. Rhabdomyolysis: an American Association for the Surgery of Trauma Clinical Consensus Document. Trauma Surg Acute Care Open. 2022;7(1):e000836.
  2. Bosch X, Poch E, Grau JM. Rhabdomyolysis and acute kidney injury. N Engl J Med. 2009;361(1):62–72.
  3. Huerta-Alardín AL, Varon J, Marik PE. Bench-to-bedside review: rhabdomyolysis — an overview for clinicians. Crit Care. 2005;9(2):158–169.
  4. Evans KJ, Greenberg A. Hyperkalemia: a review. J Intensive Care Med. 2005;20(5):272–290.
  5. Petejova N, Martinek A. Acute kidney injury due to rhabdomyolysis and renal replacement therapy: a critical review. Crit Care. 2014;18(3):224.
  6. McMahon GM, Zeng X, Waikar SS. A risk prediction score for kidney failure or mortality in rhabdomyolysis. JAMA Intern Med. 2013;173(19):1821–1828.