Back to Course

2025 PACUPrep BCCCP Preparatory Course

0% Complete
0/0 Steps
  1. Pulmonary

    ARDS
    4 Topics
    |
    1 Quiz
  2. Asthma Exacerbation
    4 Topics
    |
    1 Quiz
  3. COPD Exacerbation
    4 Topics
    |
    1 Quiz
  4. Cystic Fibrosis
    6 Topics
    |
    1 Quiz
  5. Drug-Induced Pulmonary Diseases
    3 Topics
    |
    1 Quiz
  6. Mechanical Ventilation Pharmacotherapy
    5 Topics
    |
    1 Quiz
  7. Pleural Disorders
    5 Topics
    |
    1 Quiz
  8. Pulmonary Hypertension (Acute and Chronic severe pulmonary hypertension)
    5 Topics
    |
    1 Quiz
  9. Cardiology
    Acute Coronary Syndromes
    6 Topics
    |
    1 Quiz
  10. Atrial Fibrillation and Flutter
    6 Topics
    |
    1 Quiz
  11. Cardiogenic Shock
    4 Topics
    |
    1 Quiz
  12. Heart Failure
    7 Topics
    |
    1 Quiz
  13. Hypertensive Crises
    5 Topics
    |
    1 Quiz
  14. Ventricular Arrhythmias and Sudden Cardiac Death Prevention
    5 Topics
    |
    1 Quiz
  15. NEPHROLOGY
    Acute Kidney Injury (AKI)
    5 Topics
    |
    1 Quiz
  16. Contrast‐Induced Nephropathy
    5 Topics
    |
    1 Quiz
  17. Drug‐Induced Kidney Diseases
    5 Topics
    |
    1 Quiz
  18. Rhabdomyolysis
    5 Topics
    |
    1 Quiz
  19. Syndrome of Inappropriate Antidiuretic Hormone (SIADH)
    5 Topics
    |
    1 Quiz
  20. Renal Replacement Therapies (RRT)
    5 Topics
    |
    1 Quiz
  21. Neurology
    Status Epilepticus
    5 Topics
    |
    1 Quiz
  22. Acute Ischemic Stroke
    5 Topics
    |
    1 Quiz
  23. Subarachnoid Hemorrhage
    5 Topics
    |
    1 Quiz
  24. Spontaneous Intracerebral Hemorrhage
    5 Topics
    |
    1 Quiz
  25. Neuromonitoring Techniques
    5 Topics
    |
    1 Quiz
  26. Gastroenterology
    Acute Upper Gastrointestinal Bleeding
    5 Topics
    |
    1 Quiz
  27. Acute Lower Gastrointestinal Bleeding
    5 Topics
    |
    1 Quiz
  28. Acute Pancreatitis
    5 Topics
    |
    1 Quiz
  29. Enterocutaneous and Enteroatmospheric Fistulas
    5 Topics
    |
    1 Quiz
  30. Ileus and Acute Intestinal Pseudo-obstruction
    5 Topics
    |
    1 Quiz
  31. Abdominal Compartment Syndrome
    5 Topics
    |
    1 Quiz
  32. Hepatology
    Acute Liver Failure
    5 Topics
    |
    1 Quiz
  33. Portal Hypertension & Variceal Hemorrhage
    5 Topics
    |
    1 Quiz
  34. Hepatic Encephalopathy
    5 Topics
    |
    1 Quiz
  35. Ascites & Spontaneous Bacterial Peritonitis
    5 Topics
    |
    1 Quiz
  36. Hepatorenal Syndrome
    5 Topics
    |
    1 Quiz
  37. Drug-Induced Liver Injury
    5 Topics
    |
    1 Quiz
  38. Dermatology
    Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis
    5 Topics
    |
    1 Quiz
  39. Erythema multiforme
    5 Topics
    |
    1 Quiz
  40. Drug Reaction (or Rash) with Eosinophilia and Systemic Symptoms (DRESS)
    5 Topics
    |
    1 Quiz
  41. Immunology
    Transplant Immunology & Acute Rejection
    5 Topics
    |
    1 Quiz
  42. Solid Organ & Hematopoietic Transplant Pharmacotherapy
    5 Topics
    |
    1 Quiz
  43. Graft-Versus-Host Disease (GVHD)
    5 Topics
    |
    1 Quiz
  44. Hypersensitivity Reactions & Desensitization
    5 Topics
    |
    1 Quiz
  45. Biologic Immunotherapies & Cytokine Release Syndrome
    5 Topics
    |
    1 Quiz
  46. Endocrinology
    Relative Adrenal Insufficiency and Stress-Dose Steroid Therapy
    5 Topics
    |
    1 Quiz
  47. Hyperglycemic Crisis (DKA & HHS)
    5 Topics
    |
    1 Quiz
  48. Glycemic Control in the ICU
    5 Topics
    |
    1 Quiz
  49. Thyroid Emergencies: Thyroid Storm & Myxedema Coma
    5 Topics
    |
    1 Quiz
  50. Hematology
    Acute Venous Thromboembolism
    5 Topics
    |
    1 Quiz
  51. Drug-Induced Thrombocytopenia
    5 Topics
    |
    1 Quiz
  52. Anemia of Critical Illness
    5 Topics
    |
    1 Quiz
  53. Drug-Induced Hematologic Disorders
    5 Topics
    |
    1 Quiz
  54. Sickle Cell Crisis in the ICU
    5 Topics
    |
    1 Quiz
  55. Methemoglobinemia & Dyshemoglobinemias
    5 Topics
    |
    1 Quiz
  56. Toxicology
    Toxidrome Recognition and Initial Management
    5 Topics
    |
    1 Quiz
  57. Management of Acute Overdoses – Non-Cardiovascular Agents
    5 Topics
    |
    1 Quiz
  58. Management of Acute Overdoses – Cardiovascular Agents
    5 Topics
    |
    1 Quiz
  59. Toxic Alcohols and Small-Molecule Poisons
    5 Topics
    |
    1 Quiz
  60. Antidotes and Gastrointestinal Decontamination
    5 Topics
    |
    1 Quiz
  61. Extracorporeal Removal Techniques
    5 Topics
    |
    1 Quiz
  62. Withdrawal Syndromes in the ICU
    5 Topics
    |
    1 Quiz
  63. Infectious Diseases
    Sepsis and Septic Shock
    5 Topics
    |
    1 Quiz
  64. Pneumonia (CAP, HAP, VAP)
    5 Topics
    |
    1 Quiz
  65. Endocarditis
    5 Topics
    |
    1 Quiz
  66. CNS Infections
    5 Topics
    |
    1 Quiz
  67. Complicated Intra-abdominal Infections
    5 Topics
    |
    1 Quiz
  68. Antibiotic Stewardship & PK/PD
    5 Topics
    |
    1 Quiz
  69. Clostridioides difficile Infection
    5 Topics
    |
    1 Quiz
  70. Febrile Neutropenia & Immunocompromised Hosts
    5 Topics
    |
    1 Quiz
  71. Skin & Soft-Tissue Infections / Acute Osteomyelitis
    5 Topics
    |
    1 Quiz
  72. Urinary Tract and Catheter-related Infections
    5 Topics
    |
    1 Quiz
  73. Pandemic & Emerging Viral Infections
    5 Topics
    |
    1 Quiz
  74. Supportive Care (Pain, Agitation, Delirium, Immobility, Sleep)
    Pain Assessment and Analgesic Management
    5 Topics
    |
    1 Quiz
  75. Sedation and Agitation Management
    5 Topics
    |
    1 Quiz
  76. Delirium Prevention and Treatment
    5 Topics
    |
    1 Quiz
  77. Sleep Disturbance Management
    5 Topics
    |
    1 Quiz
  78. Immobility and Early Mobilization
    5 Topics
    |
    1 Quiz
  79. Oncologic Emergencies
    5 Topics
    |
    1 Quiz
  80. End-of-Life Care & Palliative Care
    Goals of Care & Advance Care Planning
    5 Topics
    |
    1 Quiz
  81. Pain Management & Opioid Therapy
    5 Topics
    |
    1 Quiz
  82. Dyspnea & Respiratory Symptom Management
    5 Topics
    |
    1 Quiz
  83. Sedation & Palliative Sedation
    5 Topics
    |
    1 Quiz
  84. Delirium Agitation & Anxiety
    5 Topics
    |
    1 Quiz
  85. Nausea, Vomiting & Gastrointestinal Symptoms
    5 Topics
    |
    1 Quiz
  86. Management of Secretions (Death Rattle)
    5 Topics
    |
    1 Quiz
  87. Fluids, Electrolytes, and Nutrition Management
    Intravenous Fluid Therapy and Resuscitation
    5 Topics
    |
    1 Quiz
  88. Acid–Base Disorders
    5 Topics
    |
    1 Quiz
  89. Sodium Homeostasis and Dysnatremias
    5 Topics
    |
    1 Quiz
  90. Potassium Disorders
    5 Topics
    |
    1 Quiz
  91. Calcium and Magnesium Abnormalities
    5 Topics
    |
    1 Quiz
  92. Phosphate and Trace Electrolyte Management
    5 Topics
    |
    1 Quiz
  93. Enteral Nutrition Support
    5 Topics
    |
    1 Quiz
  94. Parenteral Nutrition Support
    5 Topics
    |
    1 Quiz
  95. Refeeding Syndrome and Specialized Nutrition
    5 Topics
    |
    1 Quiz
  96. Trauma and Burns
    Initial Resuscitation and Fluid Management in Trauma
    5 Topics
    |
    1 Quiz
  97. Hemorrhagic Shock, Massive Transfusion, and Trauma‐Induced Coagulopathy
    5 Topics
    |
    1 Quiz
  98. Burns Pharmacotherapy
    5 Topics
    |
    1 Quiz
  99. Burn Wound Care
    5 Topics
    |
    1 Quiz
  100. Open Fracture Antibiotics
    5 Topics
    |
    1 Quiz

Participants 432

  • Allison Clemens
  • April
  • ababaabhay
  • achoi2392
  • adhoward1
Show more
Lesson 4, Topic 3
In Progress

Airway Clearance and Adjunctive Pharmacotherapy in Hospitalized Cystic Fibrosis

Lesson Progress
0% Complete
Optimizing Airway Clearance and Adjunctive Therapies in Hospitalized Cystic Fibrosis

Optimizing Airway Clearance and Adjunctive Therapies in Hospitalized Cystic Fibrosis

Objectives Icon A checkmark inside a circle, symbolizing achieved goals.

Learning Objective

Recommend and manage optimal airway clearance and supportive therapies for hospitalized CF patients.

I. Introduction

In cystic fibrosis (CF) exacerbations, dehydrated secretions impair mucociliary clearance, promoting infection and subsequent lung injury. Hospitalized patients require an integrated approach—combining mechanical mobilization with pharmacologic adjuncts—to restore airway patency and enhance the efficacy of antibiotic therapy.

Pearl Icon A shield with an exclamation mark, indicating a clinical pearl. Key Clinical Pearl

Early and aggressive airway clearance is crucial. It reduces mucus plugging, improves ventilation, and supports antibiotic penetration into the airways.

II. Mechanical Airway Clearance Techniques

The choice of mechanical airway clearance techniques should be based on patient cooperation, level of sedation, and the availability of resources. It is often beneficial to combine methods and consistently monitor patient tolerance.

A. Chest Physiotherapy (CPT)

CPT involves manual percussion and vibration combined with postural drainage to mobilize secretions.

  • Frequency: Typically 2–4 sessions per day, adjusted based on sputum volume and patient tolerance.
  • Adaptations: Mechanical percussors can be used for intubated or sedated patients. CPT sessions should be coordinated with ventilator weaning efforts.
Pitfall Icon An exclamation mark inside a triangle, indicating a potential pitfall. Pitfalls of CPT

CPT can be labor-intensive, its reproducibility may vary, and it can sometimes lead to hemodynamic instability in critically ill patients.

Pearl Icon A shield with an exclamation mark, indicating a clinical pearl. Clinical Pearl: CPT Timing

Time CPT sessions around sedation breaks or when the patient is more alert to maximize effectiveness and cooperation.

B. High-Frequency Chest Wall Oscillation (HFCWO)

HFCWO uses an inflatable vest to deliver oscillations at frequencies of 5–25 Hz, generating shear forces that help loosen mucus.

  • Settings: Sessions typically last 10–20 minutes, performed 2–4 times daily. Frequency and pressure should be titrated to patient comfort and effectiveness.
  • Advantages: Less operator-dependent than CPT and can be self-administered by cooperative patients.
  • Limitations: May be poorly tolerated in unstable ICU patients or those with multiple lines and tubes.
Pearl Icon A shield with an exclamation mark, indicating a clinical pearl. Clinical Pearl: HFCWO Safety

Ensure all lines, drains, and endotracheal tubes are securely fastened before applying the HFCWO vest to prevent dislodgement during oscillation.

C. Oscillating Positive Expiratory Pressure (OPEP) Devices

OPEP devices (e.g., Flutter, Acapella) require the patient to exhale against a resistance, which generates vibrations to mobilize mucus.

  • Technique: Sessions last 10–20 minutes, combined with huff coughing, and are performed 2–4 times daily.
  • Considerations: These devices require patient effort and coordination, making them unsuitable for sedated or intubated patients.
Pearl Icon A shield with an exclamation mark, indicating a clinical pearl. Clinical Pearl: OPEP Utility

Consider OPEP devices when CPT is not readily available or as a strategy to improve patient adherence and independence with airway clearance.

III. Pharmacotherapy Adjuncts

Pharmacologic agents play a vital role by decreasing mucus viscosity, rehydrating airway secretions, relaxing airways, and targeting chronic pathogens. These therapies should be appropriately sequenced with mechanical clearance techniques for maximal benefit.

Pharmacotherapy Adjuncts for Airway Clearance in Cystic Fibrosis
Agent Class Dosing Frequency Monitoring Pearls
Dornase alfa Recombinant DNase 2.5 mg nebulized Once daily (up to BID) Spirometry, sputum viscosity, bronchospasm Administer after mechanical clearance; pre-treat with bronchodilator if history of reactivity.
Hypertonic saline Osmotic agent 4 mL of 3–7% solution 2–4 times daily Pulmonary function, cough, electrolytes Always pre-medicate with albuterol to prevent bronchospasm.
Albuterol Short-acting β₂-agonist 2.5 mg nebulized Every 4–6 hours PRN Heart rate, tremor, airflow Give 15-30 min before mucolytics or hypertonic saline to open airways.
Ipratropium Short-acting anticholinergic 0.5 mg nebulized Every 6 hours PRN Airflow improvement, dryness Can be combined with albuterol for additive bronchodilation.
Tobramycin (inhaled) Aminoglycoside 300 mg inhaled BID Sputum cultures, ototoxicity, renal function (if concomitant systemic use) Schedule ≥6 hours apart from systemic aminoglycosides; give post-airway clearance.
Aztreonam (inhaled) Monobactam 75 mg inhaled TID Bronchospasm, sputum culture Continue home regimens; monitor for airway reactivity; give post-airway clearance.
Prednisone Systemic corticosteroid 0.5–1 mg/kg PO Daily Blood glucose, infection signs, muscle strength Reserve for severe bronchospasm or ABPA; limit duration.

A. Mucolytic Agent: Dornase Alfa

  • Indication: Thick, purulent secretions characteristic of CF exacerbations.
  • Mechanism: Cleaves extracellular DNA in sputum, reducing mucus viscoelasticity.
  • Titration: May be increased to 2.5 mg BID if sputum remains particularly tenacious and patient tolerates.
  • Contraindications: Known hypersensitivity to dornase alfa or its components.
Pitfall Icon An exclamation mark inside a triangle, indicating a potential pitfall. Pitfalls of Dornase Alfa

Considerable cost and potential for bronchospasm in susceptible individuals. Pre-treatment with a bronchodilator may be necessary.

B. Inhaled Hypertonic Saline

  • Indication: An adjunct to airway clearance for both chronic management and acute exacerbations in CF.
  • Mechanism: Acts as an osmotic agent, drawing water into the airway surface liquid, which rehydrates secretions and improves mucociliary transport.
  • Concentrations: Available in 3% to 7% solutions; selection is based on patient tolerance and clinical response.
Pitfall Icon An exclamation mark inside a triangle, indicating a potential pitfall. Pitfalls of Hypertonic Saline

Common side effects include cough and airway irritation. Pre-treatment with a bronchodilator (e.g., albuterol) is essential to prevent bronchoconstriction.

C. Bronchodilators

  • Agents: Primarily short-acting β₂-agonists (SABA) like albuterol, and short-acting anticholinergics like ipratropium.
  • Indication: Used to manage reversible airway obstruction and are often administered prior to CPT, mucolytics, or hypertonic saline to enhance their delivery and effectiveness.
Pitfall Icon An exclamation mark inside a triangle, indicating a potential pitfall. Pitfalls of Bronchodilators

β₂-agonists can cause tachycardia and tremor. Anticholinergics may lead to dryness of the mouth and airways.

D. Inhaled Antibiotics

  • Indication: Primarily for patients with chronic Pseudomonas aeruginosa colonization; these regimens should be continued during hospitalization.
  • Mechanism: Deliver high local concentrations of antibiotic to the airways, helping to disrupt biofilm formation and suppress bacterial load.
  • Dosing strategy: Ensure at least 6-hour drug-free intervals between doses of different inhaled antibiotics if applicable, and administer after airway clearance.
Pitfall Icon An exclamation mark inside a triangle, indicating a potential pitfall. Pitfalls of Inhaled Antibiotics

Potential for airway reactivity (bronchospasm), significant cost, and the risk of developing antibiotic resistance with long-term use.

E. Systemic Corticosteroids

  • Indication: Reserved for cases of severe bronchospasm or diagnosed Allergic Bronchopulmonary Aspergillosis (ABPA).
  • Regimens: Typically prednisone 0.5–1 mg/kg/day orally or an equivalent dose of intravenous methylprednisolone (e.g., 1 mg/kg IV).
  • Monitoring: Includes blood glucose levels, signs of infection, and assessment of muscle strength, especially with prolonged use.
Pitfall Icon An exclamation mark inside a triangle, indicating a potential pitfall. Pitfalls of Systemic Corticosteroids

Risks include immunosuppression, hyperglycemia, and potential for steroid-induced myopathy, particularly with higher doses or prolonged courses.

IV. Integration and Best Practices

Optimal airway management in hospitalized CF patients involves careful sequencing of therapies: typically a bronchodilator, followed by mechanical airway clearance, then mucolytics or hypertonic saline, and finally inhaled antibiotics. Scheduling these therapies requires coordination with nursing and respiratory therapy staff to optimize patient flow, tolerance, and adherence.

  • Coordinate airway clearance sessions with sedation breaks and ventilator weaning protocols in ICU patients.
  • Administer bronchodilators approximately 15-30 minutes before mucolytics or hypertonic saline to maximize airway patency.
  • Monitor patients for oxygen desaturation, hemodynamic changes (tachycardia, hypotension), and signs of bronchospasm during and after airway clearance sessions.
  • Continue chronic inhaled medication regimens (e.g., antibiotics, dornase alfa) as prescribed to prevent rebound colonization or worsening mucus plugging.

Key Practice Points:

  • Mechanical and pharmacologic therapies are synergistic; they should be combined rather than used as substitutes for one another.
  • Regular interdisciplinary rounds (involving physicians, nurses, respiratory therapists, pharmacists, and dietitians) are essential for tailoring and adjusting the airway clearance plan to the individual patient’s needs and response.
  • Document sputum volume and characteristics, as well as trends in pulmonary function tests (if feasible), on a daily basis to assess treatment efficacy.

V. Controversies and Emerging Directions

Despite advances in CF care, evidence gaps persist regarding the optimal frequency of therapies, choice of specific devices, and appropriate steroid dosing outside of ABPA. Emerging research is focused on defining ICU-specific protocols and exploring novel adjunctive therapies.

  • There is no definitive consensus on the superiority of HFCWO versus CPT in critically ill or ventilated CF patients; choices are often guided by local expertise and patient factors.
  • The ideal timing and frequency of dornase alfa administration in ventilated patients with CF remain unclear and warrant further investigation.
  • The role and optimal dosing/duration of systemic corticosteroids for CF exacerbations without ABPA lack high-quality evidence and remain a subject of debate.
  • The development of automated, closed-loop airway clearance devices that can adapt to real-time physiological feedback is an area of active investigation.

Editor’s Note:

Insufficient source material was provided for a detailed discussion of ICU-specific device protocols and emerging pharmacotherapies (e.g., inhaled mucokinetic peptides). A comprehensive section on these topics would ideally include:

  • Comparative trials evaluating different HFCWO frequencies and pressures in various patient populations.
  • Device-specific contraindications, troubleshooting, and workflow integration strategies for ICU settings.
  • Data on novel mucolytics, anti-inflammatory inhalants, and therapies targeting mucus hydration beyond hypertonic saline.

References

  1. Flume PA, Mogayzel PJ Jr, Robinson KA, Goss CH, Rosenblatt RL, Kuhn RJ, et al. Cystic fibrosis pulmonary guidelines: treatment of pulmonary exacerbations. Am J Respir Crit Care Med. 2009;180(9):802–808.
  2. West NE, Beckett VV, Jain R, Sanders DB, Nick JA, Heltshe SL, et al. Standardized treatment of pulmonary exacerbations (STOP) study: physician treatment practices and outcomes for individuals with cystic fibrosis with pulmonary exacerbations. J Cyst Fibros. 2017;16:600–606.
  3. Heltshe SL, Goss CH, Thompson V, Sagel SD, Sanders DB, Marshall BC, et al. Short-term and long-term response to pulmonary exacerbation treatment in cystic fibrosis. Thorax. 2016;71(3):223–229.